Li, F., Zhang, X., Kondragunta, S., Schmidt, C.C. and Holmes, C.D., 2020. A preliminary evaluation of GOES-16 active fire product using Landsat-8 and VIIRS active fire data, and ground-based prescribed fire records. Remote Sensing of Environment, 237, p.111600.
Li, F., Zhang, X. and Kondragunta, S., 2020. Biomass Burning in Africa: An Investigation of Fire Radiative Power Missed by MODIS Using the 375 m VIIRS Active Fire Product. Remote Sensing, 12(10), p.1561.
Fusco, E.J., Finn, J.T., Abatzoglou, J.T., Balch, J.K., Dadashi, S. and Bradley, B.A., 2019. Detection rates and biases of fire observations from MODIS and agency reports in the conterminous United States. Remote sensing of environment, 220, pp.30-40.
Masocha, M., Dube, T., Mpofu, N.T. and Chimunhu, S., 2018. Accuracy assessment of MODIS active fire products in southern African savannah woodlands. African journal of ecology, 56(3), pp.563-571.
Liu, T., Marlier, M.E., Karambelas, A., Jain, M., Singh, S., Singh, M.K., Gautam, R. and DeFries, R.S., 2019. Missing emissions from post-monsoon agricultural fires in northwestern India: regional limitations of MODIS burned area and active fire products. Environmental Research Communications, 1(1), p.011007.
Atwood EC, Englhart S, Lorenz E, Halle W, Wiedemann W, et al. (2016). Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird). PLOS ONE 11(8): e0159410. doi: 10.1371/journal.pone.015941
Hu, X., C. Yu, D. Tian, M. Ruminski, K. Robertson, L. A. Waller, and Y. Liu (2016). Comparison of the Hazard Mapping System (HMS) fire product to ground-based fire records in Georgia, USA. Journal of Geophysical Research Atmospheres. 121. 2901-2910. doi:10.1002/2015JD024448.
Dickinson, M. B., Hudak, A.T., Zajkowski, T, Loudermilk, E., L; Schroeder, W, Ellison, L., Kremens, R. L., Holley, W., Martinez, O., Paxton, A., Bright, B. C., O'Brien, J.J., Hornsby, B., Ichoku, C., Faulring, J., Gerace, A., Peterson, D., Mauceri, J., (2016). Measuring radiant emissions from entire prescribed fires with ground, airborne and satellite sensors - RxCADRE 2012. International Journal of Wildland Fire. 25: 48-61.
Koltunov, A., Ustin, S., L., Quayle, B., Schwind, B., Ambrosia, V. G., and Li, W. (2016). The development and first validation of the GOES Early Fire Detection (GOES-EFD) algorithm. Remote Sensing of Environment. 184. 436-453. http://doi.org/10.1016/j.rse.2016.07.021.
Oliva, P., Schroeder, W., (2015). Assessment of VIIRS 375 m active fire detection product for direct burned area mapping. Remote Sensing of Environment. 160. 144-155. http://doi.org/10.1016/j.rse.2015.01.010.
Freeborn, P. H., M. J. Wooster, D. P. Roy, and M. A. Cochrane (2014). Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation, Geophys. Res. Lett., 41, 1988-1994, doi:10.1002/2013GL059086.
Freeborn, P. H., Wooster, M. J., Roberts, G. and Xu, W (2014). Evaluating the SEVIRI Fire Thermal Anomaly Detection Algorithm across the Central African Republic Using the MODIS Active Fire Product. Remote Sensing, 6(3),
1890-1917; doi:10.3390/rs6031890
Schroeder, W., Ellicott, E., Ichoku, C., Ellison, L., Dickinson, M.B., Ottmar, R.D., Clements, C., Hall, D., Ambrosia, V., & Kremens, R. (2014). Integrated active fire retrievals and biomass burning emissions using complementary near-
coincident ground, airborne and spaceborne sensor data. Remote Sensing of Environment, 140, 719-730
Hantson, S., Padilla, M., Corti, D., & Chuvieco, E. (2013). Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sensing of Environment, 131, 152-159
Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J., & Morton, D. (2008). Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sensing of Environment, Volume 112,
2711-2726
Tansey, K., Beston, J., Hoscilo, A., Page, S.E., & Paredes Hernández, C.U. (2008). Relationship between MODIS fire hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia. Journal of Geophysical Research, 113
Zhukov, B., Lorenz, E., Oertel, D., Wooster, M., & Roberts, G. (2006). Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimentalsmall satellite mission (2001
Csiszar, I.A., Morisette, J.T., & Giglio, L. (2006). Validation of active fire detection from moderate-resolution satellite sensors: The MODIS example in Northern Eurasia. IEEE Transactions on Geoscience and Remote Sensing, 44, 1757-1764
Morisette, J.T., Giglio, L., Csiszar, I., & Justice, C.O. (2005). Validation of the MODIS active fire product over Southern Africa with ASTER data. International Journal of Remote Sensing, 26, 4239-4264
Lizundia-Loiola, J., OtÑn, G., Ramo, R. and Chuvieco, E., 2020. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sensing of Environment, 236, p.111493.
Lizundia-Loiola, J., Pettinari, M.L. and Chuvieco, E., 2020. Temporal Anomalies in Burned Area Trends: Satellite Estimations of the Amazonian 2019 Fire Crisis. Remote Sensing, 12(1), p.151.
Giglio, L. and Roy, D.P., 2020. On the outstanding need for a long-term, multi-decadal, validated and quality assessed record of global burned area: caution in the use of Advanced Very High Resolution Radiometer data. Science of Remote Sensing, p.100007.
Tanase, M.A., Belenguer-Plomer, M.A., Roteta, E., Bastarrika, A., Wheeler, J., Fernàndez-Carrillo, Á., Tansey, K., Wiedemann, W., Navratil, P., Lohberger, S. and Siegert, F., 2020. Burned Area Detection and Mapping: Intercomparison of Sentinel-1 and Sentinel-2 Based Algorithms over Tropical Africa. Remote Sensing, 12(2), p.334.
Rodrigues, J.A., Libonati, R., Pereira, A.A., Nogueira, J.M., Santos, F.L., Peres, L.F., Santa Rosa, A., Schroeder, W., Pereira, J.M., Giglio, L. and Trigo, I.F., 2019. How well do global burned area products represent fire patterns in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. International Journal of Applied Earth Observation and Geoinformation, 78, pp.318-331.
Mota, B., Gobron, N., Cappucci, F. and Morgan, O., 2019. Burned area and surface albedo products: Assessment of change consistency at global scale. Remote Sensing of Environment, 225, pp.249-266.
Humber, M.L., Boschetti, L., Giglio, L. and Justice, C.O., 2019. Spatial and temporal intercomparison of four global burned area products. International journal of digital earth, 12(4), pp.460-484.
Borini-Alves, D., Pérez-Cabello, F., Mimbrero, M.R. and Febrer-Martínez, M., 2018. Accuracy assessment of the latest generations of MODIS burned area products for mapping fire scars on a regional scale over Campos Amazônicos Savanna Enclave (Brazilian Amazon). Journal of Applied Remote Sensing, 12(2), p.026026.
Fernandez-Carrillo, A., Belenguer-Plomer, M.A., Chuvieco, E. and Tanase, M.A., 2018, October. Effects of sample size on burned areas accuracy estimates in the Amazon Basin. In Earth Resources and Environmental Remote Sensing/GIS Applications IX (Vol. 10790, p. 107901S). International Society for Optics and Photonics.
Fornacca, D., Ren, G. and Xiao, W., 2017. Performance of Three MODIS fire products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a mountainous area of Northwest Yunnan, China, characterized by frequent small fires. Remote Sensing, 9(11), p.1131.
Vanderhoof, M.K., Fairaux, N., Beal, Y.G., Hawbaker, T.J., 2017. Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States. Remote Sensing of Environment 198, 393-406. doi:10.1016/j.rse.2017.06.025
Boschetti,L., Stehman, S. V., and Roy, D. P. (2016). A stratified random sampling design in space and time for regional to global scale burned area product validation. Remote Sensing of Environment. 186. 465-478. http://doi.org/10.1016/j.rse.2016.09.016.
Hall, J. V., Loboda, T. V., Giglio, L., McCarty, G. W. (2016). A MODIS-based burned area assessment for Russian croplands: Mapping requirements and challenges. Remote Sensing of Environment. 184. 506-521. http://doi.org/10.1016/j.rse.2016.07.022.
Moreira De AraÒjo, F., Ferreira, L. G., (2015). Satellite-based automated burned area detection: A performance assessment of the MODIS MCD45A1 in the Brazilian savanna. International Journal of Applied Earth Observation and Geoinformation. 36. 94-102. http://doi.org/10.1016/j.jag.2014.10.009.
Padilla, M., S. V. Stehman, R. Ramon, D. Corti, S. Hantson, P. Oliva, I. Alonso-Canas, A. V. Bradley, K. Tansey, B. Mota, J. M. Pereira, E. Chuvieco (2015). Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. Remote Sensing of Environment, 160, Pages 114-121.
Sparks, M. M., Luigi, B., Smith, A. M. S., Tinkham W. T., Lannom K. O., Newingham B. A.., (2014). An accuracy assessment of the MTBS burned area product for shrub
Tsela, P, Wessels, K, Botai, J, Archibald, S, Swanepoel, D, Steenkamp, K and Frost, P. (2014). Validation of the Two Standard MODIS Satellite Burned-Area Products and an Empirically-Derived Merged Product in South Africa. Remote Sensing. 6(2), 1275-1293; doi:10.3390/rs6021275.
Padilla, M., Stehman, S.V., & Chuvieco, E. (2014a). Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling. Remote Sensing of Environment, 144, 187-196
Padilla, M., Stehman, S.V., Litago, J., & Chuvieco, E. (2014b). Assessing the temporal stability of the accuracy of a time series of burned area products. Remote Sensing, 6, 2050-2068
Boschetti, L., Roy, D., & Justice, C. (2009). International Global Burned Area Satellite Product Validation Protocol.
Part I - Production and standardization of validation reference data. In CEOS-CalVal (Ed.) (pp. 1-11). USA: Committee on Earth Observation Satellites
Csiszar, I.A., Arino, O., Geraci, R., Giglio, L., Goldammer, J.G., de Groot, W., Justice, C.O., Kondragunta, S., Prins, E., Sessa, R., & Tansey, K. (2009). Fire - Fire Disturbance, ECV-T13: GTOS Assessment of the status of the development of standards for the Terrestrial Essential Climate Variables. In R. Sessa (Ed.). Rome: FAO
Roy, D.P., & Boschetti, L. (2009). Southern Africa validation of the MODIS, L3JRC, and GlobCarbon burned-area products. IEEE Transactions on Geoscience and Remote Sensing, 47, 1032-1044
Roy, D.P., Boschetti, L., Justice, C. O., Ju, J. (2008) The collection 5 MODIS burned area product Ü Global evaluation by comparison with the MODIS active fire product, Remote Sensing of Environment. 112. 9. 3690-3707. http://doi.org/10.1016/j.rse.2008.05.013.
Boschetti, L., Flasse, S.P., & Brivio, P.A. (2004). Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary. Remote Sensing of Environment, 91,
280-292
van der Werf, G.R., Randerson, J., T., Collatz, G.J., Giglio, L., Kasibhatla, P.S., Arellano, A.F., Olsen, S.C., & Kasischke, E.S. (2004). Continental scale-partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science, 303, 73-76
Wooster, M.J., Zhukov, B., and Oertel, D., (2003). Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products, Remote Sensing of Environment. 86. 1.83-107. http://doi.org/10.1016/S0034-4257(03)00070-1.
Xu, W., Wooster, M.J., He, J. and Zhang, T., 2020. First study of Sentinel-3 SLSTR active fire detection and FRP retrieval: Night-time algorithm enhancements and global intercomparison to MODIS and VIIRS AF products. Remote Sensing of Environment, 248, p.111947.
Roteta, E., Bastarrika, A., Padilla, M., Storm, T. and Chuvieco, E., 2019. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sensing of Environment, 222, pp.1-17.
Urbanski, S., Nordgren, B., Albury, C., Schwert, B., Peterson, D., Quayle, B. and Hao, W.M., 2018. A VIIRS direct broadcast algorithm for rapid response mapping of wildfire burned area in the western United States. Remote Sensing of Environment, 219, pp.271-283.
Chuvieco, E., Lizundia-Loiola, J., Pettinari, M.L., Ramo, R., Padilla, M., Tansey, K., Mouillot, F., Laurent, P., Storm, T., Heil, A. and Plummer, S., 2018. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth System Science Data, 10(4), pp.2015-2031.