NASA Logo, National Aeronautics and Space Administration
LPVS website  banner

 

Satellite-Derived Active Fire, Burned Area, and Fire Radiative Power Product Intercomparison and Validation References

Thermal Anomalies Validation

2022

Chen, J., Li, R., Tao, M., Wang, L., Lin, C., Wang, J., Wang, L., Wang, Y. and Chen, L., 2022. Overview of the   performance of satellite fire products in China: Uncertainties and challenges. Atmospheric Environment, 268,   p.118838.

2021

Libonati, R., Pereira, J. M. C, Da Camara, C. C., et al., 2021, Twenty-first century droughts have not increasingly   exacerbated fire season severity in the Brazilian Amazon. Nature Scientific Reports, 11:4400.

Xu, W., Wooster, M.J., He, J. and Zhang, T., 2021. Improvements in high-temporal resolution active fire detection and   FRP retrieval over the Americas using GOES-16 ABI with the geostationary Fire Thermal Anomaly (FTA) algorithm.   Science of Remote Sensing, 3, p. 100016.

Xu, W., Wooster, M.J., Polehampton, E., Yemelyanova, R. and Zhang, T., 2021. Sentinel-3 active fire detection and FRP   product performance-Impact of scan angle and SLSTR middle infrared channel selection. Remote Sensing of   Environment, 261, p. 112460.

Paugam, R., Wooster, M.J., Mell, W.E., Rochoux, M.C., Filippi, J.B., Rücker, G., Frauenberger, O., Lorenz, E.,   Schroeder, W., Main, B. and Govender, N., 2021. Orthorectification of Helicopter-Borne High Resolution Experimental   Burn Observation from Infra Red Handheld Imagers. Remote Sensing, 13(23), p.4913.

Forghani, A., Thankappan, M., & Cechet, B., 2021. Validation of MODIS and AVHRR Fire Detections in Australia.   International Journal of Geoinformatics, 17(3).

2020

Li, F., Zhang, X., Kondragunta, S., Schmidt, C.C. and Holmes, C.D., 2020. A preliminary evaluation of GOES-16 active   fire product using Landsat-8 and VIIRS active fire data, and ground-based prescribed fire records. Remote Sensing of   Environment, 237, p.111600.

Xu, W., Wooster, M.J., He, J. and Zhang, T., 2020. First study of Sentinel-3 SLSTR active fire detection and FRP   retrieval: Night-time algorithm enhancements and global intercomparison to MODIS and VIIRS AF products. Remote   Sensing of Environment, 248, p.111947.

2019

Fusco, E.J., Finn, J.T., Abatzoglou, J.T., Balch, J.K., Dadashi, S. and Bradley, B.A., (2019). Detection rates and biases of   fire observations from MODIS and agency reports in the conterminous United States. Remote sensing of environment,   220, pp.30-40.

Liu, T., Marlier, M.E., Karambelas, A., Jain, M., Singh, S., Singh, M.K., Gautam, R. and DeFries, R.S., 2019. Missing   emissions from post-monsoon agricultural fires in northwestern India: regional limitations of MODIS burned area and   active fire products. Environmental Research Communications, 1(1), p.011007.

2018

Masocha, M., Dube, T., Mpofu, N.T. and Chimunhu, S., 2018. Accuracy assessment of MODIS active fire products in   southern African savannah woodlands. African journal of ecology, 56(3), pp.563-571.

2016

Atwood EC, Englhart S, Lorenz E, Halle W, Wiedemann W, et al. (2016). Detection and Characterization of Low   Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring   Satellite Sensor (FireBird). PLOS ONE 11(8): e0159410. doi: 10.1371/journal.pone.015941

Dickinson, M. B., Hudak, A.T., Zajkowski, T, Loudermilk, E., L; Schroeder, W, Ellison, L., Kremens, R. L., Holley, W.,   Martinez, O., Paxton, A., Bright, B. C., O'Brien, J.J., Hornsby, B., Ichoku, C., Faulring, J., Gerace, A., Peterson, D.,   Mauceri, J., (2016). Measuring radiant emissions from entire prescribed fires with ground, airborne and satellite   sensors - RxCADRE 2012. International Journal of Wildland Fire. 25: 48-61.

Hu, X., C. Yu, D. Tian, M. Ruminski, K. Robertson, L. A. Waller, and Y. Liu (2016). Comparison of the Hazard Mapping   System (HMS) fire product to ground-based fire records in Georgia, USA. Journal of Geophysical Research   Atmospheres. 121. 2901-2910. doi:10.1002/2015JD024448.

Koltunov, A., Ustin, S., L., Quayle, B., Schwind, B., Ambrosia, V. G., and Li, W. (2016). The development and first   validation of the GOES Early Fire Detection (GOES-EFD) algorithm. Remote Sensing of Environment. 184. 436-453.   http://doi.org/10.1016/j.rse.2016.07.021.

2015

Oliva, P., Schroeder, W., (2015). Assessment of VIIRS 375 m active fire detection product for direct burned area   mapping. Remote Sensing of Environment. 160. 144-155. http://doi.org/10.1016/j.rse.2015.01.010.

2014

Freeborn, P. H., M. J. Wooster, D. P. Roy, and M. A. Cochrane (2014). Quantification of MODIS fire radiative power   (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation,   Geophys. Res. Lett., 41, 1988-1994, doi:10.1002/2013GL059086.

Freeborn, P. H., Wooster, M. J., Roberts, G. and Xu, W (2014). Evaluating the SEVIRI Fire Thermal Anomaly Detection   Algorithm across the Central African Republic Using the MODIS Active Fire Product. Remote Sensing, 6(3),
  1890-1917; doi:10.3390/rs6031890

Schroeder, W., Ellicott, E., Ichoku, C., Ellison, L., Dickinson, M.B., Ottmar, R.D., Clements, C., Hall, D., Ambrosia, V., &   Kremens, R. (2014). Integrated active fire retrievals and biomass burning emissions using complementary near-
  coincident ground, airborne and spaceborne sensor data. Remote Sensing of Environment, 140, 719-730

2013

Hantson, S., Padilla, M., Corti, D., & Chuvieco, E. (2013). Strengths and weaknesses of MODIS hotspots to   characterize global fire occurrence. Remote Sensing of Environment, 131, 152-159

2008 and earlier

Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J.,&Morton, D. (2008). Validation of GOES and   MODIS active fire detection products using ASTER and ETM+ data. Remote Sensing of Environment, Volume 112,
  2711-2726

Tansey, K., Beston, J., Hoscilo, A., Page, S.E., & Paredes Hernández, C.U. (2008). Relationship between MODIS fire   hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia. Journal of   Geophysical Research, 113

Zhukov, B., Lorenz, E., Oertel, D., Wooster, M., & Roberts, G. (2006). Spaceborne detection and characterization of   fires during the bi-spectral infrared detection (BIRD) experimentalsmall satellite mission (2001-2004). Remote   Sensing of Environment, 100, 29-51

Csiszar, I.A., Morisette, J.T., & Giglio, L. (2006). Validation of active fire detection from moderate-resolution satellite   sensors: The MODIS example in Northern Eurasia. IEEE Transactions on Geoscience and Remote Sensing, 44,   1757-1764

Morisette, J.T., Giglio, L., Csiszar, I., & Justice, C.O. (2005). Validation of the MODIS active fire product over Southern   Africa with ASTER data. International Journal of Remote Sensing, 26, 4239-4264


Burned Area Validation

2022

Franquesa, M., Lizundia-Loiola, J., Stehman, S.V. and Chuvieco, E., 2022. Using long temporal reference units to   assess the spatial accuracy of global satellite-derived burned area products. Remote Sensing of Environment, 269,   p.112823.

2021

Campagnolo, M.L., Libonati, R., Rodrigues, J.A. and Pereira, J.M.C., 2021. A comprehensive characterization of   MODIS daily burned area mapping accuracy across fire sizes in tropical savannas. Remote Sensing of Environment,   252, p.112115.

Ramo, R., Roteta, E., Bistinas, I., van Wees, D., Bastarrika, A., Chuvieco, E., and van der Werf, G. R., 2021, African   burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite   data. PNAS, 118 (9), e2011160118.

Liu, T., and Crowley, M. A., 2021, Detection and impacts of tiling artifacts in MODIS burned area classification. IOP   SciNotes, 2, 014003.

Vetrita, Y., Cochrane, M.A., Priyatna, M., Sukowati, K.A. and Khomarudin, M.R., 2021. Evaluating accuracy of four   MODIS-derived burned area products for tropical peatland and non-peatland fires. Environmental Research Letters,   16(3), p. 035015.

Hall, J.V., Argueta, F. and Giglio, L., 2021. Validation of MCD64A1 and FireCCI51 cropland burned area mapping in   Ukraine. International Journal of Applied Earth Observation and Geoinformation, 102, p. 102443

Campagnolo, M.L., Libonati, R., Rodrigues, J.A. and Pereira, J.M.C., 2021. A comprehensive characterization of   MODIS daily burned area mapping accuracy across fire sizes in tropical savannas. Remote Sensing of Environment,   252, p. 112115.

Storey, E.A., Lee West, K.R. and Stow, D.A., 2021. Utility and optimization of LANDSATderived burned area maps for   southern California. International Journal of Remote Sensing, 42(2), pp.486-505

Gaveau, D., Descals, A., Salim, M., Sheil, D. and Sloan, S., 2021. Refined burned-area mapping protocol using   Sentinel-2 data increases estimate of 2019 Indonesian burning. Earth System Science Data Discussions, pp.1-23.

Galizia, L. F., Curt, T., Barbero, R., & Rodrigues, M., 2021. Assessing the accuracy of remotely sensed fire datasets   across the southwestern Mediterranean Basin. Natural Hazards and Earth System Sciences, 21(1), 73-86

Vanderhoof, M.K., Hawbaker, T.J., Teske, C., Ku, A., Noble, J. and Picotte, J., 2021. Mapping Wetland Burned Area   from Sentinel-2 across the Southeastern United States and Its Contributions Relative to Landsat-8 (2016–2019). Fire,   4(3), p.52

2020

Giglio, L. and Roy, D.P., 2020. On the outstanding need for a long-term, multi-decadal, validated and quality assessed   record of global burned area: caution in the use of Advanced Very High Resolution Radiometer data. Science of   Remote Sensing, p.100007.

Lizundia-Loiola, J., Otón, G., Ramo, R. and Chuvieco, E., 2020. A spatio-temporal active-fire clustering approach for   global burned area mapping at 250 m from MODIS data. Remote Sensing of Environment, 236, p.111493.

Lizundia-Loiola, J., Pettinari, M.L. and Chuvieco, E., 2020. Temporal Anomalies in Burned Area Trends: Satellite   Estimations of the Amazonian 2019 Fire Crisis. Remote Sensing, 12(1), p.151.

Tanase, M.A., Belenguer-Plomer, M.A., Roteta, E., Bastarrika, A., Wheeler, J., Fernández-Carrillo, Á., Tansey, K.,   Wiedemann, W., Navratil, P., Lohberger, S. and Siegert, F., 2020. Burned Area Detection and Mapping:   Intercomparison of Sentinel-1 and Sentinel-2 Based Algorithms over Tropical Africa. Remote Sensing, 12(2), p.334.

Franquesa, M., Vanderhoof, M. K., Stavrakoudis, D., Gitas, I. Z., Roteta, E., Padilla, M., and Chuvieco, E., 2020.   Development of a standard database of reference sites for validating global burned area products. Earth System   Science Data, 12, 3229–3246.

Pessôa, A.C.M., Anderson, L.O., Carvalho, N.S., Campanharo, W.A., Junior, C.H.L.S., Rosan, T.M., Reis, J.B.C.,   Pereira, F.R.S., Assis, M., Jacon, A.D., Ometto, J.P., Shimabukuro, Y.E., Silva, C.V.J., Pontes-Lopes, A., Morello, T.F.,   and Aragão, L.E.O.C., 2020. Intercomparison of Burned Area Products and Its Implication for Carbon Emission   Estimations in the Amazon. Remote Sensing, 12, 3864.

Valencia, G. M., Anaya, J. A., Velásquez, E. A., Ramo, R., and Caro-Lopera, F. J., 2020. About Validation-Comparison   of Burned Area Products. Remote Sensing, 12, 3972.

2019

Rodrigues, J.A., Libonati, R., Pereira, A.A., Nogueira, J.M., Santos, F.L., Peres, L.F., Santa Rosa, A., Schroeder, W.,   Pereira, J.M., Giglio, L. and Trigo, I.F., 2019. How well do global burned area products represent fire patterns in the   Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. International Journal of Applied Earth   Observation and Geoinformation, 78, pp.318-331.

Mota, B., Gobron, N., Cappucci, F. and Morgan, O., 2019. Burned area and surface albedo products: Assessment of   change consistency at global scale. Remote Sensing of Environment, 225, pp.249-266.

Humber, M.L., Boschetti, L., Giglio, L. and Justice, C.O., 2019. Spatial and temporal intercomparison of four global   burned area products. International journal of digital earth, 12(4), pp.460-484.

2018

Borini-Alves, D., Pérez-Cabello, F., Mimbrero, M.R. and Febrer-Martínez, M., 2018. Accuracy assessment of the latest   generations of MODIS burned area products for mapping fire scars on a regional scale over Campos Amazônicos   Savanna Enclave (Brazilian Amazon). Journal of Applied Remote Sensing, 12(2), p.026026.

Fernandez-Carrillo, A., Belenguer-Plomer, M.A., Chuvieco, E. and Tanase, M.A., 2018, October. Effects of sample size   on burned areas accuracy estimates in the Amazon Basin. In Earth Resources and Environmental Remote   Sensing/GIS Applications IX (Vol. 10790, p. 107901S). International Society for Optics and Photonics.

2017

Fornacca, D., Ren, G. and Xiao, W., 2017. Performance of Three MODIS fire products (MCD45A1, MCD64A1,   MCD14ML), and ESA Fire_CCI in a mountainous area of Northwest Yunnan, China, characterized by frequent small   fires. Remote Sensing, 9(11), p.1131.

Vanderhoof, M.K., Fairaux, N., Beal, Y.G., Hawbaker, T.J., 2017. Validation of the USGS Landsat Burned Area Essential   Climate Variable (BAECV) across the conterminous United States. Remote Sensing of Environment 198, 393-406.   doi:10.1016/j.rse.2017.06.025

2016

Boschetti,L., Stehman, S. V., and Roy, D. P. (2016). A stratified random sampling design in space and time for regional   to global scale burned area product validation. Remote Sensing of Environment. 186. 465-478.   http://doi.org/10.1016/j.rse.2016.09.016.

Hall, J. V., Loboda, T. V., Giglio, L., McCarty, G. W. (2016). A MODIS-based burned area assessment for Russian   croplands: Mapping requirements and challenges. Remote Sensing of Environment. 184. 506-521.   http://doi.org/10.1016/j.rse.2016.07.022.

2015

Moreira De Araějo, F., Ferreira, L. G., (2015). Satellite-based automated burned area detection: A performance   assessment of the MODIS MCD45A1 in the Brazilian savanna. International Journal of Applied Earth Observation   and Geoinformation. 36. 94-102.   http://doi.org/10.1016/j.jag.2014.10.009.

Padilla, M., S. V. Stehman, R. Ramon, D. Corti, S. Hantson, P. Oliva, I. Alonso-Canas, A. V. Bradley, K. Tansey, B. Mota,   J. M.   Pereira, E. Chuvieco (2015). Comparing the accuracies of remote sensing global burned area products using   stratified random sampling and estimation. Remote Sensing of Environment, 160, Pages 114-121.

2014

Sparks, M. M., Luigi, B., Smith, A. M. S., Tinkham W. T., Lannom K. O., Newingham B. A.., (2014). An accuracy   assessment of the MTBS burned area product for shrub-steppe fires in the northern Great Basin, United States.   International Journal of Wildland Fire 24, 70-78. https://doi.org/10.1071/WF14131

Tsela, P, Wessels, K, Botai, J, Archibald, S, Swanepoel, D, Steenkamp, K and Frost, P. (2014). Validation of the Two   Standard MODIS Satellite Burned-Area Products and an Empirically-Derived Merged Product in South Africa.   Remote Sensing. 6(2), 1275-1293; doi:10.3390/rs6021275.

Padilla, M., Stehman, S.V.,&Chuvieco, E. (2014a). Validation of the 2008 MODIS-MCD45 global burned area product   using stratified random sampling. Remote Sensing of Environment, 144, 187-196

Padilla, M., Stehman, S.V., Litago, J.,&Chuvieco, E. (2014b). Assessing the temporal stability of the accuracy of a time   series of burned area products. Remote Sensing, 6, 2050-2068

2009

Boschetti, L., Roy, D.,&Justice, C. (2009). International Global Burned Area Satellite Product Validation Protocol.
  Part I - Production and standardization of validation reference data. In CEOS-CalVal (Ed.) (pp. 1-11). USA:   Committee on Earth Observation Satellites

Csiszar, I.A., Arino, O., Geraci, R., Giglio, L., Goldammer, J.G., de Groot, W., Justice, C.O., Kondragunta, S., Prins, E.,   Sessa, R.,&Tansey, K. (2009). Fire - Fire Disturbance, ECV-T13: GTOS Assessment of the status of the development   of standards for the Terrestrial Essential Climate Variables. In R. Sessa (Ed.). Rome: FAO

Roy, D.P.,&Boschetti, L. (2009). Southern Africa validation of the MODIS, L3JRC, and GlobCarbon burned-area   products. IEEE Transactions on Geoscience and Remote Sensing, 47, 1032-1044

2008 and earlier

Roy, D.P., Boschetti, L., Justice, C. O., Ju, J. (2008) The collection 5 MODIS burned area product ă Global evaluation   by comparison with the MODIS active fire product, Remote Sensing of Environment. 112. 9. 3690-3707.   http://doi.org/10.1016/j.rse.2008.05.013.

Boschetti, L., Flasse, S.P.,&Brivio, P.A. (2004). Analysis of the conflict between omission and commission in low spatial   resolution dichotomic thematic products: The Pareto Boundary. Remote Sensing of Environment, 91,
  280-292

van der Werf, G.R., Randerson, J., T., Collatz, G.J., Giglio, L., Kasibhatla, P.S., Arellano, A.F., Olsen, S.C.,&Kasischke,   E.S. (2004). Continental scale-partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science,   303, 73-76

Wooster, M.J., Zhukov, B., and Oertel, D., (2003). Fire radiative energy for quantitative study of biomass burning:   derivation from the BIRD experimental satellite and comparison to MODIS fire products, Remote Sensing of   Environment. 86. 1.83-107. http://doi.org/10.1016/S0034-4257(03)00070-1.


Products

Xu, W., Wooster, M.J., He, J. and Zhang, T., (2020). First study of Sentinel-3 SLSTR active fire detection and FRP   retrieval: Night-time algorithm enhancements and global intercomparison to MODIS and VIIRS AF products. Remote   Sensing of Environment, 248, p.111947.

Roteta, E., Bastarrika, A., Padilla, M., Storm, T. and Chuvieco, E., (2019). Development of a Sentinel-2 burned area   algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sensing of Environment, 222, pp.1-17.

Urbanski, S., Nordgren, B., Albury, C., Schwert, B., Peterson, D., Quayle, B. and Hao, W.M., (2018). A VIIRS direct   broadcast algorithm for rapid response mapping of wildfire burned area in the western United States. Remote Sensing   of Environment, 219, pp.271-283.

Chuvieco, E., Lizundia-Loiola, J., Pettinari, M.L., Ramo, R., Padilla, M., Tansey, K., Mouillot, F., Laurent, P., Storm, T.,   Heil, A. and Plummer, S., (2018). Generation and analysis of a new global burned area product based on MODIS
  250 m reflectance bands and thermal anomalies. Earth System Science Data, 10(4), pp.2015-2031.