Ma et al. (2023), An atmospheric influence correction method for longwave radiation-based in-situ land surface temperature, Remote Sensing of Environment, doi:10.1016/j.rse.2023.113611
Pérez-Planells et al. (2023) Retrieval Consistency between LST CCI Satellite Data Products over Europe and Africa, Remote Sensing, doi: 10.3390/rs15133281
Meng et al. (2023) Investigation and validation of two all-weather land surface temperature products with in-situ measurements, Geo-spatial Information Science, doi: 10.1080/10095020.2023.2255037.
Hu et al. (2023), Comparison between the ASTER and ECOSTRESS global emissivity datasets, International Journal of Applied Earth Observation and Geoinformation, doi: 10.1016/j.jag.2023.103227
Ermida et al. (2023), A combined Vegetation cover and Temperature Emissivity Separation (V TES) method to estimate land surface emissivity, IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2023.3301615
Niclòs et al. (2023), Evaluating Landsat-9 TIRS-2 calibrations and land surface temperature retrievals against ground measurements using multi-instrument spatial and temporal sampling along transects, International Journal of Applied Earth Observation and Geoinformation, doi: 10.1016/j.jag.2023.103576.
Hu et al. (2022) Continental-scale evaluation of three ECOSTRESS land surface temperature products over Europe and Africa: Temperature-based validation and cross-satellite comparison, Remote Sensing of Environment, doi: 10.1016/j.rse.2022.113296
Wang et al. (2023), Evaluation of Three Land Surface Temperature Products From Landsat Series Using in Situ Measurements. IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2022.3232624.
Galve et al. (2022), Assessment of Land Surface Temperature Estimates from Landsat 8-TIRS in A High-Contrast Semiarid Agroecosystem. Algorithms Intercomparison. Remote Sensing, doi: 10.3390/rs14081843.
Göttsche et al. (2022), Validation of Satellite-Retrieved Land Surface Temperature (LST) Products at Gobabeb, Namibia. Journal Namibia Scientific Society, vol. 69, ISSN: 1018-7677.
Niclòs et al. (2021) Evaluation of Landsat-8 TIRS data recalibrations and land surface temperature split-window algorithms over a homogeneous crop area with different phenological land covers, ISPRS Journal of Photogrammetry and Remote Sensing, https://doi.org/10.1016/j.isprsjprs.2021.02.005.
Hulley et al. (2021), Validation and quality assessment of the ECOSTRESS level-2 land surface temperature and emissivity product, IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2021.3079879.
J. Ma et al. (2021), Continuous evaluation of the spatial representativeness of land surface temperature validation sites, Remote Sensing of Environment, vol. 265, doi: 10.1016/j.rse.2021.112669.
I.F. Trigo et al. (2021), Validation and consistency assessment of land surface temperature from geostationary and polar orbit platforms: SEVIRI/MSG and AVHRR/Metop, ISPRS J. Photo. Rem. Sens., doi: 10.1016/j.isprsjprs.2021.03.013
P. Reiners et al. (2021), Validation of AVHRR Land Surface Temperature with MODIS and In Situ LST - A TIMELINE Thematic Processor, Remote Sensing, doi: 10.3390/rs13173473.
L. PŽrez-Planells et al. (2021), Validation of Sentinel-3 SLSTR Land Surface TemperatureRetrieved by the Operational Product and Comparison with Explicitly Emissivity-DependentAlgorithms, Remote Sensing, doi: 10.3390/rs13112228.
Chen et al. (2021), Land Surface Temperature from GOES-East and GOES-West, Journal of Atmospheric and Oceanic Technology, DOI: 10.1175/JTECH-D-20-0086.1
Masiello, G., Serio, C., Venafra, S., Poutier, L., and Gs¯ttsche, F.-M. (2019). SEVIRI Hyper-Fast Forward Model with Application to Emissivity Retrieval. Sensors, 19, 1532; doi: 10.3390/s19071532
Coll, C., Nicl…s, R., Puchades, J., Garcia-Santos, V., Galve, J.M., PZ¯rez-Planells, L., Valor, E., and Theocharous, E. (2019). Laboratory calibration and field measurement of land surface temperature and emissivity using thermal infrared multiband radiometers. International Journal of Applied Earth Observation and Geoinformation, 78, 227-239, doi: 10.1016/j.jag.2019.02.002
Duan, S.-B., Li, Z.-L., Li, H., Göttsche, F.-M., Wu, H., Zhao, W., Leng, P., Zhang, X., and Coll, C. (2019). Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sensing of Environment, 225, 16—29. doi: 10.1016/j.rse.2019.02.020
Theocharous, E., Fox, N. P., Barker-Snook, I., Nicl…s, R., Garcia Santos, V., Minnett, P. J., Göttsche, F.M., Poutier, L., Morgan, N., Nightingale, T., Wimmer, W., Hèyer, J., Zhang, K., Yang, M., Guan, L., Arbelo, M., and Donlon, C.J. (2019). The 2016 CEOS infrared radiometer comparison: Part 2: Laboratory comparison of radiation thermometers. Journal of Atmospheric and Oceanic Technology. doi: 10.1175/JTECH-D-18-0032.1
Martin, M., Ghent, D., Pires, A., Göttsche, F.-M., Cermak, J., and Remedios, J. (2019). Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years. Remote sensing, 11 (5), Article No.479. doi: 10.3390/rs11050479
Ermida, S.L., Trigo, I.F., DaCamara, C.C., and Roujean, J.-L. (2018). Assessing the potential of parametric models to correct directional effects on local to global remotely sensed LST. Remote Sensing of Environment, 209, 410-422, doi: 10.1016/j.rse.2018.02.066
Gao, C., Qiu, S., Li, C., Tang, L., Ma, L., Qian, Y., Zhao, Y., and Ren, L. (2018). Evaluation of land surface temperature by comparing FY-3C/VIRR with Terra/MODIS and MSG/SEVIRI data. International Journal of Remote Sensing,
40(5-6), 1-14, doi: 10.1080/01431161.2018.1460514
Göttsche, F.-M., Olesen, F., Poutier, L., Langlois, S., Wimmer, W., Garcia Santos, V., Coll, C., Niclos, R., Arbelo, M., and Monchau, J.P. (2018). Report from the Field Inter-Comparison Experiment (FICE) for Land Surface Temperature. ESA Technical Report. Online: http://www.frm4sts.org/wp-content/uploads/sites/3/2018/10/FRM4STS_LST-FICE_
report_v2017-11-20_signed.pdf
Lu, L., Zhang, T., Wang, T., and Zhou, X. (2018). Evaluation of Collection-6 MODIS Land Surface Temperature Product Using Multi-Year Ground Measurements in an Arid Area of Northwest China. Remote Sensing, 10(11), 1852, doi: 10.3390/rs10111852
Masiello, G., Serio, C., Venafra, S., Liuzzi, G., Poutier, L., and Göttsche, F.-M. (2018). Physical Retrieval of Land Surface Emissivity Spectra from Hyper-Spectral Infrared Observations and Validation with In Situ Measurements. Remote Sensing, 10 (6), 976. doi: 10.3390/rs10060976
Mattar, C., Santamaria-Artigas, A., Ponzoni, F., Pinto, C.T.; Barrientos, C., and Hulley, G. (2018). Atacama Field Campaign: laboratory and in-situ measurements for remote sensing applications. International Journal of Digital Earth, 1-19, doi: 10.1080/17538947.2018.1450901
Niclós, R., Pérez-Planells, L., Coll, C., Valiente, J.A., and Valor, E. (2018). Evaluation of the S-NPP VIIRS land surface temperature product using ground data acquired by an autonomous system at a rice paddy. ISPRS Journal of Photogrammetry and Remote Sensing, 135, 1-12, doi: 10.1016/j.isprsjprs.2017.10.017
Hulley, G. C., Malakar, N., Islam, T., Freepartner, R, (2017), NASA's MODIS and VIIRS Land Surface Temperature and Emissivity Products: A Consistent and High Quality Earth System Data Record, IEEE TGRS, DOI: 10.1109/JSTARS.2017.2779330.
Ghent, D. J., Corlett, G. K., Göttsche, F.-M., and Remedios, J. J. (2017). Global land surface temperature from the Along-Track Scanning Radiometers. Journal of Geophysical Research: Atmospheres, vol. 122, pp. 12167—12193. doi:10.1002/2017JD027161
Göttsche, F.-M., Olesen, F.-S., Trigo, I.F., Bork-Unkelbach, A., and Martin, M.A. (2016). Long Term Validation of Land Surface Temperature Retrieved from MSG/SEVIRI with Continuous in-Situ Measurements in Africa. Remote Sensing, vol 8(5), 410; doi:10.3390/rs8050410
Malakar, N.K., and G. C. Hulley, (2016), A Water Vapor Scaling Model for Improved Land Surface Temperature and Emissivity Separation of MODIS Thermal Infrared Data, Remote Sensing of Environment, 182, 252-264
Islam, T., Hulley, G.C., Malakar, N. K., Radocinski, R.G., Guillevic, P.C., and Hook, S.J. (2016). A Physics-Based Algorithm for the Simultaneous Retrieval of Land Surface Temperature and Emissivity From VIIRS Thermal Infrared Data, IEEE Transactions on Geoscience and Remote Sensing, Septermber 2016.
Masiello, G., Serio, C., Venafra, S., Liuzzi, G., Gs¯ttsche, F., Trigo, I.F., and Watts, P. (2015). Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: a validation and intercomparison study. Atmospheric Measurement Techniques, 8, 2981—2997, doi: 10.5194/amt-8-2981-2015
Nicl…s, R., Valiente, J.A., Barbera, M.J., and Coll, C. (2015). An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products. Remote Sensing, vol. 7(11), pp. 15269—15294.
Jiménez-Muñoz, J.C., Sobrino, J.A., Mattar, C., Hulley, G., and Göttsche, F. M. (2014). Temperature and Emissivity Separation from MSG/SEVIRI Data. IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 9, pp. 5937-5951, doi: 10.1109/TGRS.2013.2293791
Ermida, S.L., Trigo, I.F., DaCamara, C.C, Göttsche, F.-M., Olesen, F.S., and Hulley, G. (2014). Validation of remotely sensed surface temperature over an oak woodland landscape — the problem of viewing and illumination geometries. Remote Sensing of Environment, vol. 148, pp. 1627.
Guillevic, P. C., Biard, J., Hulley, G. C., Privette, J. L., Hook, S. J., Göttsche, F.-M., Radocinski, R., Román, M. O., Yu, Y., and Csiszar I., 2014. Validation of Land Surface Temperature products derived from the Visible Infrared Imager Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sensing of Environment, 154, 19-37, doi: 10.1016/j.rse.2014.08.013.
Wan Z., 2014. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment, 140, 36-45, doi:10.1016/ j.rse.2013.08.027.
Hulley, G. C., C. G. Hughes and S. J. Hook, 2013. Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data. JGR Atmospheres, vol 117, pp. D23113- D23130.
Guillevic P., Bork-Unkelbach A., Göettsche F.M., Hulley G., Gastellu-Etchegorry J.P., Olesen F. and Privette J.L., 2013. Directional viewing effects on Satellite Land Surface Temperature products over sparse vegetation canopies - A multi-
sensor analysis. IEEE Geoscience and Remote Sensing Letter - Special stream on Biophysical variables and spatial heterogeneities in agricultural landscapes, Vol. 10, Issue 6, pp. 1464-1468, doi:10.1109/LGRS.2013.2260319.
Göttsche, F.-M., Olesen F.-S., and Bork-Unkelbach, A, 2013. Validation of land surface temperature derived from MSG/SEVIRI with in situ measurements at Gobabeb, Namibia, International Journal of Remote Sensing, vol. 34, nos. 9-10, pp. 3069-3083.
Li, Z.-L., Tang, B. H., Wu, H., Ren, H. Z., Yan, G. J., Wan, Z.M., Trigo, I. F., and Sobrino, J. A., 2013. Satellite-derived land surface temperature: current status and perspectives. Remote Sensing of Environment, 131, 14-37, doi: 10.1016/j.rse.2012.12.008.
Heidinger, A. K., Laszlo, I., Molling, C. C., Dan Tarpley, D., 2013. Using SURFRAD to Verify the NOAA Single-Channel Land Surface Temperature Algorithm. Journal of Atmospheric and Oceanic Technology, 30, 2868-2884, doi: 10.1175/JTECH-D-13-00051.1
Hulley, G. C. and S. J. Hook, 2012. A radiance-based method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) land surface temperature product. Journal Geophysical Research-Atmospheres, vol. 117, pp. D20117-D20116.
Guillevic P., Privette J.L., Coudert B., Palecki M. A., Demarty J., Ottlé C. and Augustine J.A., 2012. Land Surface Temperature product validation using NOAA's surface climate observation networks - Scaling methodology for the Visible Infrared Imager Radiometer Suite (VIIRS). Remote Sensing of Environment, 124, 282-298.
Schneider, P., Ghent, D., Corlett, G., Prata, F., and Remedios, J., 2012. AATSR validation: LST validation protocol. Internal publication, UL-NILU-ESA-LST-LVP Issue 1 Revision 0, page 1-39. http://lst.nilu.no/Portals/73/Docs/Reports/UL-NILU-ESA-LST-LVP-Issue1-Rev0-1604212.pdf
Niclòs, R., Galve, J. M., Valiente, J. A., Estrela, M. J., and Coll, C., 2011. Accuracy assessment of land surface temperature retrievals from MSG2-SEVIRI data. Remote Sensing of Environment, 115, 2126-2140.
Hulley, G. C., and S. J. Hook, 2011. Generating Consistent Land Surface Temperature and Emissivity Products Between ASTER and MODIS Data for Earth Science Research IEEE Geoscience and Remote Sensing, vol. 49, pp. 1304-1315.
Hulley, G., S. J. Hook, E. Manning, S. Y.Lee and E. Fetzer, 2009. Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts. Journal of Geophysical Research-
Atmospheres, vol. 114, pp. D19104- D19114.
Hulley, G. and S. J. Hook, 2009. Intercomparison of versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia. Remote Sensing of Environment, vol. 113, pp. 1313-1318.
Wang, K., and Liang, S., 2009. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites. Remote Sensing of Environment, 113 (7), 1556-1565.
Coll, C., Wan, Z., and Galve, J.M. (2009). Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. Journal of Geophysical Research, vol. 114, pp. 1—15.
Coll, C., S. J. Hook and J. M. Galve, 2009a. Land Surface Temperature From The Advanced Along-Track Scanning Radiometer: Validation Over Inland Waters And Vegetated Surfaces. IEEE Geoscience and Remote Sensing, vol. 47, pp. 350-360.
Hall, D. K., J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman and K. Steffen, 2008. Comparison of Satellite-Derived Ice and Snow Surface Temperatures over Greenland with in-situ Observations. Remote Sensing of Environment, vol 112, pp. 3739-3749.
Wan, Z, 2008. New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sensing of Environment, 112, 59-74.
Trigo, I.F., Monteiro, I.T., Olesen, F., and Kabsch, E., 2008. An assessment of remotely sensed land surface temperature. Journal of Geophysical Research: Atmospheres, 113, D17108, doi:10.1029/2008JD010035.
Hulley, G. C. and S. J. Hook, 2008. ASTER Land Surface Emissivity Database of California and Nevada. Geophysical Research Letters, vol. 35, pp. L13401- L13406.
Wang, W., Liang, S., and Meyers, T.P. (2008). Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sensing of Environment, 112, 623-635.
Inamdar, A. K., A. French, S. Hook, G. Vaughan and W. Luckett, 2008. Land Surface Temperature Retrieval at High Spatial and Temporal Resolutions over the Southwestern US, vol. 113, D07107- D07124.
Barsi, J. A., S. J. Hook, J. R. Schott, N. G. Raqueno, B. L. Markham, 2007. Landsat-5 thematic mapper thermal band calibration update. IEEE Geoscience and Remote Sensing Letters, vol. 4 pp. 552-555.
Sobrino, J. A., Jiménez-Muñoz, J. C., Balick, L., Gillespie, A. R., Sabol, D. A., & Gustafson, W. T., 2007. Accuracy of ASTER level-2 thermal-infrared standard products of an agricultural area in Spain. Remote Sensing of Environment, 106, 146-153.
Hook, S. J., R. G. Vaughan, H. Tonooka and S. G. Schladow, 2007. Absolute Radiometric In-Flight Validation of Mid Infrared and Thermal Infrared Data From ASTER and MODIS on the Terra Spacecraft Using the Lake Tahoe, CA/NV, USA, Automated Validation Site. IEEE Transactions Geoscience and Remote Sensing, vol. 45, pp. 1798-1807.
Noyes, E.J., Sòria, G., Sobrino, J.A., Remedios, J.J., Llewellyn-Jones, D.T., Corlett, G.K., 2007. AATSR land surface temperature product algorithm verification over a WATERMED site, Advances in Space Research, 39, pp. 171-178.
Bosilovich, M.G., 2006. A comparison of MODIS land surface temperature with in situ observations, Geophysical Research Letters, 33, L20112, doi:10.1029/2006GL027519.
Coll, C., Caselles, V., Galve, J. M., Valor, E., Niclòs, R., Sanchez, J. M., and Rivas, R. (2005). Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sensing of Environment, 97, 288-300.
Hook, S. J., Clodius, W. B and L. Balick, R. E. Alley, A. Abtahi, R. C. Richards and S. G. Schladow, 2005. In-Flight Validation of Mid and Thermal Infrared Data from the Multispectral Thermal Imager (MTI) Using an Automated High Altitude Validation Site at Lake Tahoe CA/NV, USA. IEEE Transactions Geoscience and Remote Sensing, vol. 43, pp. 1991-1999.
Jacob, F., Petitcolin, F., Schmugge, T., Vermote, E., French, A., and Ogawa, K., 2004. Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors. Remote Sensing of Environment, 90, 137-152.
Wan, Z., Zhang, Y., Zhang, Q., and Li, Z.-L., 2004. Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25, 261-274.
Hook, S. J., Prata A. J., Alley, R. E., Abtahi, A., Richards, R. C., Schladow, S. G. and S. Ó. Pálmarsson, 2003 Retrieval of Lake Bulk-and Skin-Temperatures using Along Track Scanning Radiometer (ATSR) Data: A Case Study using Lake Tahoe, CA. Journal of Atmospheric and Oceanic Technology, Vol. 20, No. 2, pp 534-548.
Wan, Z., Zhang, Y., Zhang, Q., and Li, Z.-L., 2002. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sensing of Environment, 83, 163-180.
Aminou, D. M. A., 2002. MSG's SEVIRI Instrument, ESA Bulletin, 111, 15-17, 2002.
Aminou, D., Jacquet, B., and Pasternak, F., 2002. Characteristics of the Meteosat Second Generation Radiometer/Imager SEVIRI. Proceedings of SPIE Europto series 3221 19-31.
Sobrino, J. A., Li, Z.-L., Stoll, M. P., and Becker, F., 1996. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. International Journal of Remote Sensing, 17, 2089-2114.
Prata, A. J., 1994. Land surface temperatures derived from the advanced very high resolution radiometer and the along-track scanning radiometer: 2. Experimental results and validation of AVHRR algorithms. Journal of Geophysical Research: Atmospheres, 99(D6), 13025 - 13058.