

Land Product Validation (LPV) Sub-group Meeting

Michael Cosh – (USDA) –Chair Fabrizio Niro – (ESA/ESRIN) – Vice Chair Subgroup meeting 5 Dec 2023

NEXT LPV TELECON Feb 6, 2024

CE®S

Attendance

Participants

Michael Cosh

Fabrizio Niro

Jaime Nickeson

Lluis Perez-Planells

Joshua Gray

John Bolten

Tomoaki Miura

Angela Erb

Luke Brown

Victor Rodríguez-Galiano

Jorge Sanchez-Zapero

Carrie Vuyovich

Sylvain Leblanc

Sasha Tyukavina

Alex Gruber

Laura Duncanson

Juha Lemmetytinen

Glynn Hulley

Unavailable

Joshua Gray

Sophie Bontemps

Marie Weiss

Kim Calders

Neha Hunka

Louis Giglio

Bernardo Mota

Else Swinnen

CESS

2023 Focus Area Leads

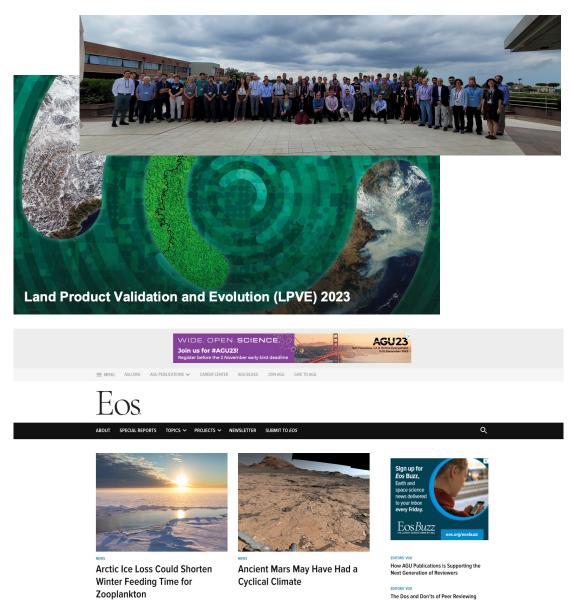
	First Name	Last Name	Institution	Country	End of Term	Candidates
	Michael	Cosh	USDA	USA	Apr 2025	
Admin	Fabrizio	Niro	ESA	Italy	Apr 2025 (becomes Chair)	
	Jaime	Nickeson	GSFC	USA		
Land Carren	Alexandra	Tyukavina	University of Maryland	USA	March 2024 (1st term)	
Land Cover	Sophie	Bontemps	Université Catholique de Louvain	Belgium	Oct 2023 (2nd term)	Nandika Tsendbaza
	Marie	Weiss	INRA	France	Sep 2023 (2nd term)	Richard Fernandes
Biophysical	Sylvain	Leblanc	Natural Resources Canada	Canada	Sep 2023 (2nd term)	Kai Yan
	Luke	Brown	University of Salford	UK	Jan 2026 (1st term)	
Fine /D A	Louis	Giglio	University of Maryland	USA	Sep 2023 (1st term)	
Fire/Burn Area	Bernardo	Mota	National Physical Lab	UK	Jan 2026 (1st term)	
	Zhuosen	Wang	GSFC	USA	ex-officio	
Surface Rad	Angela	Erb	UMass Boston	USA	Jan 2026 (1st term)	
	Jorge	Sanchez-Zapero	EOLab	Spain	Jan 2026 (1st term)	
	John	Bolten	NASA GSFC	USA	Apr 2023 (1st term)	
Soil Moisture	Alexander	Gruber	TU Wien	Austria	Oct 2023 (1nd term)	
	Glynn	Hulley	NASA/JPL	USA	July 2024 (2nd term)	
LST	Lluis	Perez Planells	Karlsruhe Institute of Technology	Germany	Sept 2026 (1st term)	
81	Joshua	Gray	North Carolina State University	USA	Jan 2025 (2nd term)	
Phenology	Victor	Rodríguez-Galiano	University of Seville	Spain	Aug 2025 (2nd term)	
	Carrie	Vuyovich	NASA GSFC	USA	Jan 2026 (1st term)	
Snow Cover	Juha	Lemmetyinen	Finnish Meteorologial Inst.	Finland	Sep 2026 (1st term)	
	Tomoaki	Miura	University of Hawai'i	USA	Dec 2022 (2nd term)	
Veg Index	Else	Swinnen	VITO	Belgium	Apr 2023 (2nd term)	
	Laura	Duncanson	UMD/GSFC	USA	ex-officio	
Biomass	Kim	Calders	Ghent University	Belgium	Feb 2026 (1st term)	
	Neha	Hunka	UMD	USA	Feb 2026 (1st term)	
ET						Yun Yang
ET						Carmelo Cammalle
GPP/NPP						Maosheng Zhao

WCGV and LPV Plenary

Upcoming WGCV Plenaries

- WGCV-53, March 5-8, 2024 CONAE, Cordoba, Argentina
- WGCV-54, Late 24 USGS, Sioux Falls, South Dakota

American Geophysical Union Fall Meeting LPV Town Hall, San Francisco, California 14 December 2023, Thursday 1pm PST


Past LPV Plenary Meetings

- May 2016, ESA LPS, Prague, Czech Republic
- March 2018, ESA LPVE, Frascati, Italy
- April 2019, ESA LPS, Milan Italy
- May 2021, Virtual
- Sep 2022 Virtual
- June 2023, ESA Frascati

EOS paper: outcomes of LPVE23 WS

- A paper was prepared by F. Niro, M. Cosh and J. Nickeson to summarize the main takeaways from LPVE23 WS
- The paper was submitted to EOS science magazine published by AGU
- The paper was accepted for publication, the provisional title is (final editing ongoing): Trustworthy Satellite Earth Observations for Science and Society
- The aim of the paper is to raise
 awareness about the critical role of
 validation in both science and societal
 applications and to highlight remaining
 challenges and data gaps, as well as
 stressing the need for sustainability

Validation Stages

What needs to be moved to different validation stage?

Split snow into snow extent and SWE. Move to higher categories (TBD)

Biomass needs to be moved to stage 2 or possibly 3.

	Validation Stage - Definition and Current State	Variable
0	No validation. Product accuracy has not been assessed. Product considered beta.	
1	Product accuracy is assessed from a small (typically < 30) set of locations and time periods by comparison with in-situ or other suitable reference data.	Snow Fire Radiative Power Biomass
2	Product accuracy is estimated over a significant (typically > 30) set of locations and time periods by comparison with reference in situ or other suitable reference data. Spatial and temporal consistency of the product, and its consistency with similar products, has been evaluated over globally representative locations and time periods. Results are published in the peer-reviewed literature.	fAPAR Phenology LAI
3	Uncertainties in the product and its associated structure are well quantified over a significant (typically > 30) set of locations and time periods representing global conditions by comparison with reference in situ or other suitable reference data. Validation procedures follow community-agreed-upon good practices. Spatial and temporal consistency of the product, and its consistency with similar products, has been evaluated over globally representative locations and time periods. Results are published in the peer-reviewed literature.	Vegetation Indicies LST & Emissivity Active Fire Burned Area
4	Validation results for stage 3 are systematically updated when new product versions are released or as the interannual time series expands. When appropriate for the product, uncertainties in the product are quantified using fiducial reference measurements over a global network of sites and time periods (if available).	Land Cover Albedo Soil Moisture

New Focus Areas

- Evapotranspiration (ET): Yun Yang, Carmelo Cammalleri
 - ECOSTRESS, GOES, LSTM, SBG, +
- Gross Primary Productivity/Net Primary Productivity (GPP/NPP):
 - FLEX, Landsat, NISAR, +

CESS

Protocols Status – Updates or Still on Track?

Focus Area	Protocol
Biophysical	LAI(2014)
Fire/Burn Area	Burned Area Targeting 2023 Active Fire next
Phenology	Targeting 2023
Vegetation Index	Targeting 2023 (60%)
Land Cover	Targeting 2023 (60%)
Snow Cover	
Surface Radiation	Albedo(2019) Global Downward Radiation Product Validation Best Practices (80%)
Soil Moisture	SM(2020)
LST and Emissivity	LST (2019)
Aboveground Biomass	AGWB(2021)
Evapotranspiration	
GPP/NPP	

CESS

FA Web Status

The Home and Collaboration pages have been placed in your GoogleDoc folders for markup updates/reviews

Please update these by next call if you have not done so.

If anyone cannot access still, please reach out to me.

Focus Area	Home Page	Product table	Collaboration Page	References	Listserv	Letters to Community
Land Cover	May 2021	Sept 2022	May 2021	Sep 2021	Dec 2023	Oct 2022
Biophysical LAI/Fpar	Nov 2021	Nov 2021	Nov 2021	Aug 2022	Oct 2019	Sept 2019
Surface Rad/Albedo	Mar 2021	Jan 2023	Mar 2021	Oct 2022	Dec 2023	May 2020
LST/Emissivity	Mar 2021	Nov 2021	Mar 2021	Feb 2023	Dec 2023	
Fire/Burn Area	May 2021	Aug 2022	Mar 2020	Aug 2022	Dec 2023	
Soil Moisture	Mar 2021	Feb 2019	Mar 2021	Sep 2022	Dec 2020	Dec 2020
Phenology	Apr 2021	July 2020	Apr 2021	Oct 2022	Dec 2023	
Snow Cover	Oct 2021	Jan 2021	Oct 2021	Oct 2021	Oct 2019	
Vegetation Index	May 2021	Nov 2021	May 2021	May 2021	May 2019	
Biomass	Dec 2023	Oct 2021	Dec 2023	Dec 2023	Dec 2023	Sept 2020

Focus Area Reports

- Snow
- Biomass
- Soil Moisture
- Vegetation Indices
- Land Cover
- Biophysical (LAI/FAPAR)
- Fire/Disturbance
- LST&E
- Surface Radiation
- Land Surface Phenology

Snow (1/3)

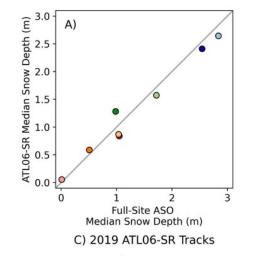
Recent Publications

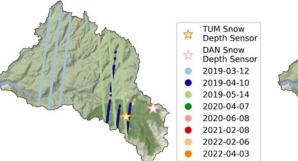
ICESat-2 data used to estimate basin-wide average snow depth in Tuolumne Basin, California

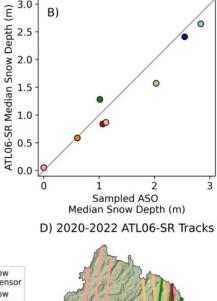
Remote Sensing of Environment 300 (2024) 113843

Contents lists available at ScienceDirect

Remote Sensing of Environment


journal homepage: www.elsevier.com/locate/rse


Mountain snow depth retrievals from customized processing of ICESat-2 satellite laser altimetry


Hannah Besso*, David Shean, Jessica D. Lundquist

University of Washington Department of Civil and Environmental Engineering, 1400 NE Campus Parkway, Seattle, WA 98195, United States of America

Snow (2/3)

SNOW – Field Measurement Schools

SNOW MEASUREMENT FIELD SCHOOL 2024

JANUARY 8 - 11, 2024

APPLICATION DEADLINE 10.18.2023

Location: AMC Highland Center at Crawford Notch in

Bretton Woods, New Hampshire

https://www.cuahsi.org/workshops/snowmeasurement-field-school-2024

> Both have selected participants Lots of interest:

- Over 80 applications for CUAHSI school (30 slots)
- Over 60 applications for EGU school (26 slots)

EGU SNOW SCIENCE WINTER SCHOOL

2024

FEBRUARY 25 - MARCH 2, 2024

APPLICATIONS OPEN OCTOBER 2023

Location: FMI Arctic Research Centre, Sodankylä, Finland

Field-oriented training course

- Understanding the physical processes of the snowpack
- Optical and microwave snow

- · For graduate students and
- · Corresponds to 3 ECTS For more information visit www.slf.ch/more/snowschool

CESS

Snow (3/3)

Snow Campaign & Mission Activities

Campaigns:

- University of Waterloo is conducting ongoing flights with their L-band and Ku-band (low) radar,
 CryoSAR, with coordinated ground measurements
 - Regular flights over Powassan, Ontario
 - Campaign planned for April in Cambridge Bay
- Finnish Meteorological Institute (FMI) has been conducting tower-based radar experiment at Sodankylä site
 - Focus on microwave signatures over northern wetlands, as proxy for methane emissions (2023-24)
 - SAR interferometry (L-band) for SWE over boreal forest
- NASA IIP instrument, SNOWWI C, Ku-band (low and high) will be flown over Grand Mesa, CO in Feb and April, 2023

Missions:

- Preparations for CIMR passive microwave mission, will include retrieval algorithm for snow
- NASA Earth System Explorer 2 snow mission concepts in review
- TSMM Canadian snow mission concept (pre-Phase A)

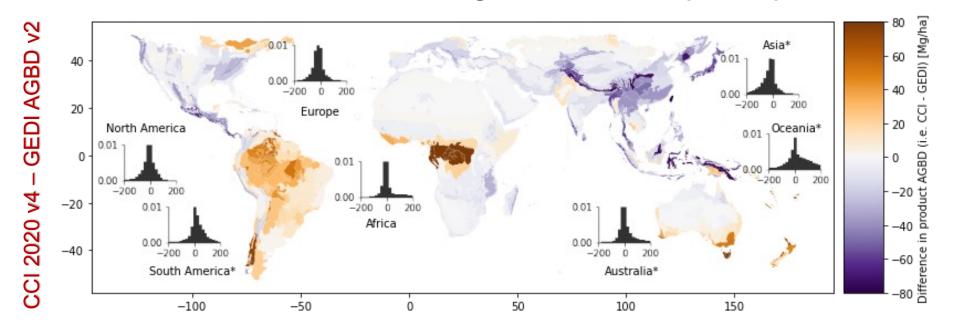
Aboveground Biomass (1/3)

GEO-TREES update:

- BCI (Panama) completed in 2023. Led by Helene Muller-Landau.

Census + ALS + TLS (3ha, instrument on loan from Ghent Uni)

- More sites (TBC) planned for 2024 by UCL and GFZ



Aboveground Biomass (2/3)

Biomass Harmonization: Product Intercomparison

Paper on NASA GEDI and ESA CCI global AGB map comparisons:

Paper presents an inter-comparison of the NASA GEDI v2 AGB estimates and ESA CCI v4 estimates, and the comparison of these estimates to NFI-based estimates in Mexico, Peru, Spain and Laos. It discusses how AGB map producers must align to inform policy and the UNFCCC GST.

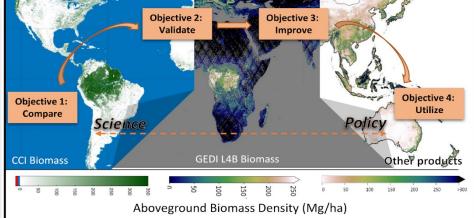
Aboveground Biomass (3/3)

Upcoming Harmonization Work

Biomass Expert's Workshop: March 20-22 2024

The University of Maryland and the USGS SilvaCarbon program are proposing a meeting with the AGB product developers, IPCC and a couple of stakeholder countries to find ways to integrate AGB maps in national reporting, ways to deal with the discrepancies in the products and in the uncertainty estimation underlying the methods in the products.

Expert Workshop: Basis and guidance for AGB map uptake 17 - 22 March 2024



- NASA CMS 2023 Grant:
 - Mexico, Ecuador, Ghana, Senegal

https://iopscience.iop.org/article/10.1088/1748-9326/ad0b60

Soil Moisture (1/4)

Cross-community workshop

International Space Science Institute (ISSI) workshop in Bern, Switzerland (13–17 November, 2023)

"Remote Sensing in Climatology – Essential Climate Variables (ECVs) and their

uncertainties" | Bartsch

Bartsch	Annett	bgeos					
Blazquez	Alejandro	LEGOS					
Blessing	Simon	FastOpt GmbH					
Bogusz	Janusz	Military University of Technology, Warsaw					
Boergens	Eva	GFZ Potsdam					
Bulgin	Claire	University of Reading					
Camacho	Ferndando	University of Valencia					
Cuynet	Amelie	LSCE/IPSL					
Devastahale	Abhay	SMHI					
Dobslaw	Henryk	GFZ Potsdam					
Dorigo	Wouter	TU Wien					
Gobron	Kevin	Université de Paris					
Gou	Junyang	ETH Zurich					
Gruber	Alexander	TU Wien					
Güntner	Andreas	GFZ Potsdam					
Hewitt	Helene	Metoffice					
Hohensinn	Roland	ISSI Bern					
Hollmann	Rainer	Deutscher Wetterdienst					
Jäggi	Adrian	Universität Bern					
Kern	Stefan	Universität Hamburg					
Klos	Anna	Military University of Technology, Warsaw					
Krinner	Gerhard	CNRS					

Langsdale	Mary	Kings College London
Lavergne	Thomas	Meteorologisk institutt
MacIntosh	Claire	ESA-ECSAT
Mecklenburg	Susanne	ESA climate office
Merchant	Chris	University of Reading
Meyer	Ulrich	Universität Bern
Mikalsen	Anna-Christina	Deutscher Wetterdienst
Mittaz	Jonathan	University of Reading
Montillet	Jean-Phillipe	Universidade da Beira Interior / PMOD/WRC
Mortimer	Colleen	Environment and Climate Change Canada
Munoz-Sabater	Joaquin	ECMWF
Olivera	Louis	LSCE/IPSL
Povey	Adam	University of Leicester
Rast	Michael	ISSI Bern
Rayner	Nick	Metoffice
Salberg	Arnt-Børre	Norwegian Computing Center
Soja	Benedikt	ETH Zürich
Tetzlaff	Anke	meteoswiss
Velicogna	Isabella	UC Irvine
Verhoelst	Tijl	Belgian Institute for Space Aeronomy
Wooliams	Emma	National Physics Laboratory
Wunderle	Stefan	Universität Bern

Soil Moisture (2/4)

Cross-community workshop -

Several collaborative peer-reviewed articles planned; published as a volume of the ISSI Space Science Series in Springer's Surveys in Geophysics (aiming at end 2024)

- Status quo of uncertainty budgets for ECVs from gravity field recovery missions
- Observations fit for climate science: accounting for uncertainty and handling covariances
- Building uncertainty trees and informing uncertainty across data levels
- Uncertainty of uncertainty estimates
- Uncertainties of ECVs from deep learning
- Technical approaches to uncertainty propagation and covariance computation
- Best practices for estimating trends from (selected) ECV time series
- Uncertainty validation
- Making sense of uncertainties asking the right questions
- How to use uncertainty information in the analysis of ECVs
- Uncertainty components at different spatial and temporal scales
- Assessing stability in ECVs
- Pitfalls of using independent observations for evaluation without thinking

(Jäggi et al.)

(Wooliams et al.)

(Mittaz et al.)

(Gobron et al.)

(Gou et al.)

(Blessing et al.)

(Hohensin et al.)

(Verhoelst et al.)

(Gruber et al.)

(Povey et al.)

(Bulgin et al.)

(Dorigo et al.)

(Kern et al.)

Soil Moisture (3/4)

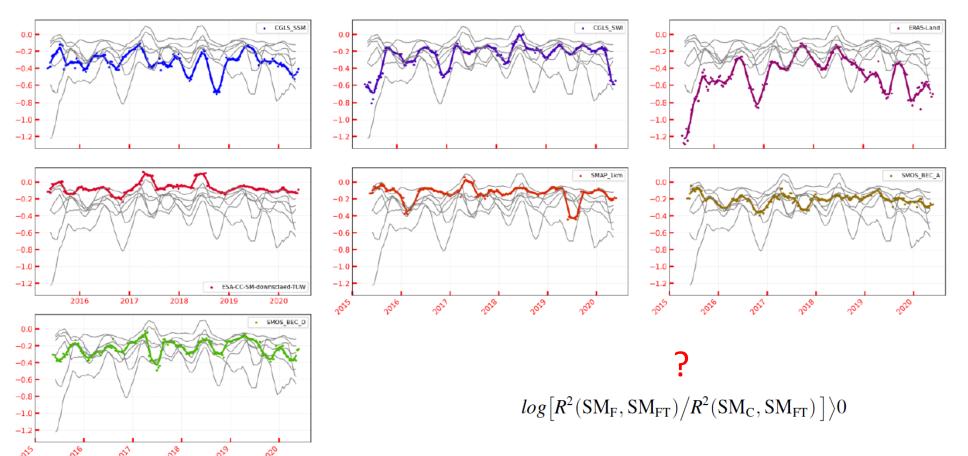
Validation of high-resolution soil moisture products

- The community is moving towards higher-resolution soil moisture products $25-40 \text{ km} \rightarrow 1-3 \text{ km} \rightarrow \text{field scale (currently mostly experimental)}$
- Currently, no agreed-upon approach to evaluate the added information content in downscaled / high-resolution products
- Soil moisture products mostly evaluated in terms of their skill in capturing temporal dynamics rather than absolute values
 - Most high-resolution products outperformed by coarse-resolution products when compared to ground measurements
 - More relevant: Spatial information content

Candidate for an update to the soil moisture validation good practices protocol!

- A method has been proposed by Crow et al. (2022)
 - Evaluating temporal and spatial skill using sparse networks
 - Criterion 1 (temporal information): $Var(SM_C SM_P) Var(SM_F SM_P)$
 - Criterion 2 (spatial information): $R^2(SM_F, SM_P)/R^2(SM_C, SM_P)$

Crow, W. T., Chen, F., & Colliander, A. (2022). Benchmarking downscaled satellite-based soil moisture products using sparse, point-scale ground observations. *Remote Sensing of Environment*, 283, 113300. https://doi.org/10.1016/j.rse.2022.113300


Soil Moisture (4/4)

Validation of high-resolution soil moisture products

Example: Comparison of the spatial **skill of 1 km products relative to that of ESA CCI SM (25 km)**Carried out as part of the 4D-Hydro project (ESA)

Products used:

- CGLS (Sentinel-1 retrieval)
- CGLS-SWI (ASCAT/S-1 fusion)
- ERA5-Land (modelled)
- ESA CCI (downscaled)
- SMAP BEC (downscaled)
- SMOS BEC (downscaled)

Vegetation Indices (1/2)

Protocol Development

- Formed a small group of VI experts to review the outline (November 2022)
 - Carolien Toté (VITO, Belgium)
 - Kamel Didan (University of Arizona, USA)
 - Molly Brown (University of Maryland, USA)
 - Michele Meroni (JRC, Italy)
 - Kazuhito Ichii (Chiba University, Japan)
- Held a kick-off meeting with the expert group (December 15, 2022)
- Held a 2nd meeting to the group's review comments/suggestions (January 31, 2023)
- Revised the outline and shared the revised outline with them (March 15, 2023)
- Completed the first complete draft (December 3, 2023)
- Plan to have the group review one more time and send out for community-wide feedback (December 2023 or January 2024)

Co-lead Recruitment

- Included the recruitment information in the latest news letter
- Plan to ask several people for interest after the first protocol draft is ready for communitywide feedback

Vegetation Indices (2/2)

Contents

COTTCCTTC		
1 Introd	uction	4
1.1 Imp	ortance of VIs	4
1.2 The	Role of CEOS and CEOS WGCV	4
1.3 Goa	l of this Document	4
1.4 CEC	OS LPV Validation Stages	4
2 Defini	tions	5
2.1 Def	initions of Vegetation Indices	5
2.1.1	Normalized Difference Vegetation Index (NDVI)	5
2.1.2	Enhanced Vegetation Index (EVI) and Two-band EVI (EVI2)	6
2.1.3	Other Vegetation Indices	7
2.2 Def	inition of spatial and geometrical aspects	7
2.2.1	Satellite measurement geolocation uncertainty	7
2.2.2	Mapping unit	7
2.3 Def	inition of validation metrics	8
3 VI req	uirements	9
3.1 Exis	sting requirements	9
3.1.1	WMO	9
3.1.2	Joint Polar Satellite System (JPSS)	9
3.1.3	Copernicus Land Monitoring Service (CLMS)	10
3.2 Proj	posed VI requirements	11
4 Genera	al Considerations for Satellite Global VI Products	11
4.1 Exis	sting VI products	11
4.2 VI 1	oroduct algorithm (compositing algorithm)	11
4.3 Ten	nporal and spatial resolutions	12
4.4 Spe	ctral considerations	12
4.5 Unc	ertainties related to VI products	12
4.5.1	Sensor calibration	13
4.5.2	Atmospheric correction	13
4.5.3	Pixel quality assurance	13
4.5.4	Compositing	13

5	R	lecom	ımended Approach for Global VI Product Validation	1							
	5.1	Pote	ential reference data sets for VI product validation	1							
	5.2	Vali	dation methods	1							
	5.3	Capacity/limitations and other considerations									
	5	.3.1	Challenges with in situ data characteristics	1							
	5	.3.2	Challenges to validation strategy	1							
6	R	Recom	mended Approach for Global VI Product Inter-Comparison	1							
	6.1	Reco	ommended inter-comparison methods	1							
	6.2	Sam	pling strategy: spatial	1							
	6.3	Sam	pling strategy: angular	1							
	6.4	Sam	pling strategy: temporal	1							
	6.5	Spec	ctral likeness	1							
	6.6	Inte	r-comparison approach	1							
	6	.6.1	Product completeness	1							
	6	.6.2	Spatial consistency								
	6	.6.3	Temporal consistency	1							
		.6.4	Difference evaluation or statistical consistency								
	6.7	Inter	r-comparison metrics	1							
	6.8	Cap	acity/limitations, or general consideration: Discussion on what is lacking	2							
	6	.8.1	Methods	2							
	6	.8.2	Challenges to validation strategy	2							
7	R	Recom	mended Contents of a Product Validation Document	2							
8	C	Conclu	isions	2							
9	R	Refere	nces	2							

Land Cover (1/2)

Protocol update: first draft 90% ready

Committee on Earth Observation Satellites
Working Group on Calibration and Validation
Land Product Validation Subgroup
Land Cover Focus Area

Land Cover and Change Map Accuracy Assessment and Area Estimation Good Practices
Protocol

Tentative outline:

Executive summary (Sophie Bontemps, Sasha Tyukavina)

- Introduction (co-leads: Sophie Bontemps, Sasha Tyukavina)
 - 1.1. Scope of the guidelines (contributors: Sophie Bontemps, Sasha Tyukavina)
 - 1.2. CEOS Validation stages (contributors: Sophie Bontemps, Sasha Tyukavina, Nandika Tsendbazar)
 - Current state of global and continental-scale land cover and change mapping and validation (contributor: Martin Herold, Sasha Tyukavina, Amy Pickens, Peter Potapov, Matthew Hansen)
 - Existing global land cover maps (contributors: Bryant Serre, Flavie Pelletier, Sasha Tyukavina, Xiaopeng Song)
- 2. Definitions and general principles (co-leads: Sophie Bontemps, Sasha Tyukavina)
 - 2.1. Key principles of accuracy assessment (contributors: Sasha Tyukavina, Sophie Bontemps, Giles Foody)
 - Land cover, land cover change, land use (contributors: IIASA, Pierre Defourny, Bryant Serre, Gerbrand Koren)
 - 2.3. Categorical maps vs. continuous fields (e.g. % tree cover) (contributor: Pierre Defourny, Bryant Serre, Gerbrand Koren)
 - Land cover change maps (contributors: IIASA, Nandika Tsendbazar, Bryant Serre, Gerbrand Koren)
 - Diversity of quantitative accuracy assessment purposes and classification uncertainty (contributor: Sophie Bontemps)
 - 2.6. Accuracy metrics and area estimates (contributors: Giles Foody, Martin Herold, Sasha Tyukavina)
 - 2.7. Quality control, accuracy assessment and inter-comparison with existing products (contributor: Sophie Bontemps)
- 3. Sampling design (co-leads/contributors: Sasha Tyukavina, Pontus Olofsson)
 - 3.1. Sampling unit
 - 3.2. Sampling frame
 - 3.3. Common probability sampling designs

- 3.4. Stratification
- 3.5. Sample size planning and allocation to strata
- Response design (co-leads: Julien Radoux, Giles Foody)
 - 4.1. Sample labeling protocol (contributors: Julien Radoux, Peter Potapov)
 - Quality of reference data (contributors: Linda See, Giles Foody, Pierre Defourny)
 - Accounting for reference data uncertainty (contributors: Nandika Tsendbazar, Sasha Tyukavina, Julien Radoux)
- 5. Analysis (co-leads/contributors: Sasha Tyukavina, Pontus Olofsson)
 - 5.1. Estimating map accuracy
 - 5.2. Estimating target class area
 - 5.3. Model-assisted estimators of area
- Sources of reference data (co-leads: Linda See, Bryant Serre)
 - Time-series of medium to very-high resolution optical data (contributors: Bryant Serre, Dmitry Schepaschenko, Linda See, Nandika Tsendbazar, Sasha Tyukavina)
 - 6.2. Spaceborn and airborne lidar data (contributor: Flavie Pelletier)
 - 6.3. Data from UAV (contributor: Gerbrand Koren)
 - 6.4. Ground surveys (contributor: Xiangming Xiao, Raphaël d'Andrimont)
 - Expert-based methods vs. crowdsourcing (contributors: Linda See, Sasha Tyukavina)
- Examples of of national-, regional- and global-scale validation efforts (co-lead: Sophie Bontemps)
 - Copernicus 100m land cover map validation (contributors: Myroslava Lesiv, Nandika Tsendbazar, Martin Herold)
 - ESA Climate Change Initiative global land cover time series (contributor: Céline Lamarche)
 - UMD GLAD validation of single- and multi-class land cover and change maps (contributor: Sasha Tyukavina, Peter Potapov)
 - 7.4. ESA Climate Change Initiative Water Bodies product (contributor: Céline Lamarche)
 - Validation of the European crop map 2018 (contributors: Astrid Verhegghen, Raphaël d'Andrimont)
 - Validation activities within the Satellite Observatory of Central African Forests (OSFAC) context (contributor: Landing Mane)
 - Validation strategy for land cover and land cover change in support of GLanCE (contributors: Katelyn Tarrio, Mark Friedl, Curtis Woodcock)

- First draft in progress (co-author review and edits)
- First draft finalized
 - Validation of the GEOGLAM crop mapping products (contributor: Sophie Bontemps)
 - Challenges and future directions (co-leads: Pierre Defourny, Xiaopeng Song)
 - 8.1. Operational validation updates (contributor: Nandika Tsendbazar, Martin Herold)
 - 8.1.1. Sampling design considerations
 - 8.1.2. Updating reference labels in validation data
 - Assessing accuracy of near real-time maps (contributor: Johannes Reiche, Amy Pickens, Eric Bullock)
 - Towards more standardized validation datasets and collections of reference data - EU reference datasets: LUCAS, farmers declarationin-situ data, Copernicus4GEOGLAM (contributors: Raphaël d'Andrimont, Michel Meroni)
 - 8.4. Local and site specific accuracy assessment (contributor: Sytze de Bruin)
 - ✓ Compiled first draft will be sent to all co-authors for comments by the end of 2023
 - ✓ Protocol version 0.0 to be sent out for broader community review early in 2024

Land Cover (2/2)

Product list update ongoing...

- ✓ Update data access/validation links;
- ✓ Update temporal coverage for the products that are being updated;
- ✓ Add missing recently published maps (e.g. global 10-m resolution land cover maps);
- ✓ Remove datasets with missing validation information, continental-scale datasets not updated, and prototype products that have been replaced with operational products.

A	A.	В	С	D	Е	F	G	Н	I	J		К	L	M	N	0	Р
1 Top	pic P	roductCategory	ProductDescriptio	n ProductID	Institution	WGCVgroup	SpatialCoverage	TemporalScale	SpatialScale	Source	DataLink		Contact	ContactEmail	ValidationLink	Publication	TemporalCoverage
		and Cover Products -				Land Cover	global	annual	1 km	AVHRR	https://daac	.ornl.gov/cgi-bin/dsv	riewe Userservices	uso@daac.ornl.gov		Husak et al., 1999; Sci	e 1992 - 1993
		and Cover Products -			University of Maryland		global	annual	1 km, 8 km, 1 de			.ornl.gov/cgi-bin/dsv		mhansen@umd.edu		Hansen, et al., 2000	1992 - 1993
		and Cover Products -			ESA	Land Cover	global	annual	300 m					eccontact@esa-landcover-c			1992 - 2020
8 LC		and Cover Products -			JRC	Land Cover	global	annual	1 km	SPOT-VGT				ib hans-juergen.stibig@jrc.it			
9 LC		and Cover Products -			USGS (distributed by		global	annual	30 m	Landsat		nep-wcmc.org/datas		cgiri@usgs.gov	http://onlinelibrary.wiley.		1997 - 2000
	_			er MODIS Urban E	University of Wiscons		global	annual	500m	MODIS				ei aschneider4@wisc.edu	http://iopscience.iop.org	/ Schneider et al. 2009	
		and Cover Products -			Commission for Envir		North America		250 m	MODIS			an-e CEC secretariat	info@cec.org			2005
		and Cover Products -			National Geomatics C		global	annual	30 m					chenjun@nsdi.gov.cn	https://www.mdpi.com/2		2000, 2010, 2020
13 LC		and Cover Products -			Tsinghua University		global		30 m	Landsat		starcloud.pcl.ac.cn/i		penggong@tsinghua.ed			2010, 2015, 2017
14 LC		and Cover Products -			Tsinghua University		global	annual	10 m	Sentinel-2		starcloud.pcl.ac.cn/i		penggong@tsinghua.ed			2017
		and Cover Products - and Cover Products -			NASA/Boston Univers NASA/Boston Univers		global		0.05 deg 500 m	MODIS MODIS		ac.usgs.gov/produc		friedl@bu.edu friedl@bu.edu	https://modis-land.gsfc https://modis-land.gsfc		
					NASA/Boston Univers		global	annual annual	30 m	Landsat		<u>ac.usgs.gov/produc</u> earthengine.app/vie		mhansen@umd.edu	https://modis-land.gsfc		2001 - 2022
	_	and Cover Products - and Cover Products -			nc NASA and USDA (GL		global	8-vear	250 m	MODIS				mnansen@umd.edu :e mhansen@umd.edu : pot			2000 - 2022
		and Cover Products -			CEReS and Chiba Ur		global	annual	1 km	MODIS			nmo. Ryutaro Tateishi	tateishi@facultv.chiba-u.i			2003, 2008, 2013
		and Cover Products - and Cover Products -			ESA ESA	Land Cover	global	annual	300 m	MERIS			obco Pierre Defourny	pierre.defournv@uclouva		<u> </u>	
	_				Commission for Envir		North America		250 m				an-e CEC secretariat	, , ,	iii nup.//due.esnin.esa.invi	il bicheron et al., 2006, i	
		and Cover Change		ıg_	Commission for Envir				30 m	MODIS				info@cec.org			2005 - 2010
		and Cover Products -			Commission for Envir		North America			Landsat		•	an-€ CEC secretariat	info@cec.org			2010
		and Cover Products - and Cover Products -		- LO OOLW-+ D		Land Cover	North America		250 m 150 m	MODIS Envisat-ASAR			an-e CEC secretariat	info@cec.org		11	2010 2005 - 2015
		and Cover Products -			Commission for Envir		North America	decadal	30 m	Landsat			an-∈CEC secretariat	info@cec.org	c(nttp://www.mapi.com/2t	Lamarche et al. 2017	2010 - 2015
		and Cover Change and Cover Products -				Land Cover	global	annual	12 m. 84 m					Ulthomas.esch@dlr.de			2010 - 2015
	_	and Cover Products -				Land Cover	pan-European					copernicus.eu/pan-e		Matina.Halkia@irc.ec.eur	7		2011 - 2013
		and Cover Products -		ex European Sellie	NOAA	Land Cover	global		1 km	VIIRS		star.nesdis.noaa.go		xiwu.zhan@noaa.gov	Q		2012 - 2022
_	_	and Cover Products -			Commission for Envir		North America		30 m	* ****			an-e CEC secretariat	info@cec.org			2012 - 2022
-		and Cover Products -		V GESAD	USGS	Land Cover	global	annual	30 m				gsc/ GFSAD project	croplands.dev@gmail.cor	https://pubs.usgs.gov/p	Thonkahail et all. 2021	
31 LC					b EU Copernicus Land		global	annual	100 m	PROBA-V				al helpdeskticket@vgt.vito.b			
32 LC					er EU Copernicus Clima		global	annual	300 m					si copernicus-support@ecm			
33 LC					of University of Maryland		global	annual	0.05 degree	AVHRR			ng-te Xiao-Peng Song	xpsongrs@gmail.com	https://doi.org/10.1038		1982 - 2016
34 LC					v University of Maryland		global	annual	30m	Landsat		umd.edu/dataset/loi umd.edu/dataset/glo		mhansen@umd.edu	https://doi.org/10.1088		2019
35 LC					University of Maryland		global	4-year epochs		Landsat		umd.edu/dataset/gic umd.edu/dataset/cro		potapov@umd.edu	https://doi.org/10.1088		2003 - 2019
36 LC					V University of Maryland		global	annual, month		Landsat		.umd.edu/dataset/cro .umd.edu/dataset/g		ahudson2@terpmail.umd			1999 - 2021
37 LC					v University of Maryland		global			Landsat		.umd.edu/dataset/g earthengine.app/vie			https://doi.org/10.3389		2000 - 2020
38 LC		and Cover Change and Cover Products -			ESA University of Maryland	Land Cover	global	5 years annual	30m 10m					potapov@umd.edu c remotesensing@vito.be	https://doi.org/10.3389 https://esa-worldcover.s		
39 10		and Cover Products -			Chinese Academy of S		global	annual	30m	Landsat		odo.org/records/428		liuly@radi.ac.cn	https://essd.copernicus		2015
40 LC		and Cover Products -		020 1 0000		Land Cover	global	annual	10m	Sentinel-2		atlas.arcgis.com/lan		nury@radi.ac.cn	https://essd.copernicus	-	2015
41 LC		and Cover Products -				Land Cover		near real-time		Sentinel-2 Sentinel-2		micworld.app/	iucovei/		https://doi.org/10.1109/1		2017-2022 2017-present
42	L	and Gover Froudels -	Clobal Land Cove	Dynamic world	Google	Land Cover	giopai	near real-time	TOTAL	Seriumei-Z	nups://dyna	ппсмопа.арр/			nups.//doi.org/10.103	Diown et al., 2022	2017-present
43	CI	urrent updates (Dec 1	 2023 Sasha T\ - a	agreed to add with	Sophie												
44		onsider removing - pe		.g. cod to ddd Willi	. 55p.110												
45		roken link, can't find v	•														
46		greed to remove with															
47	a	9. 222 to 10111010 With				•											

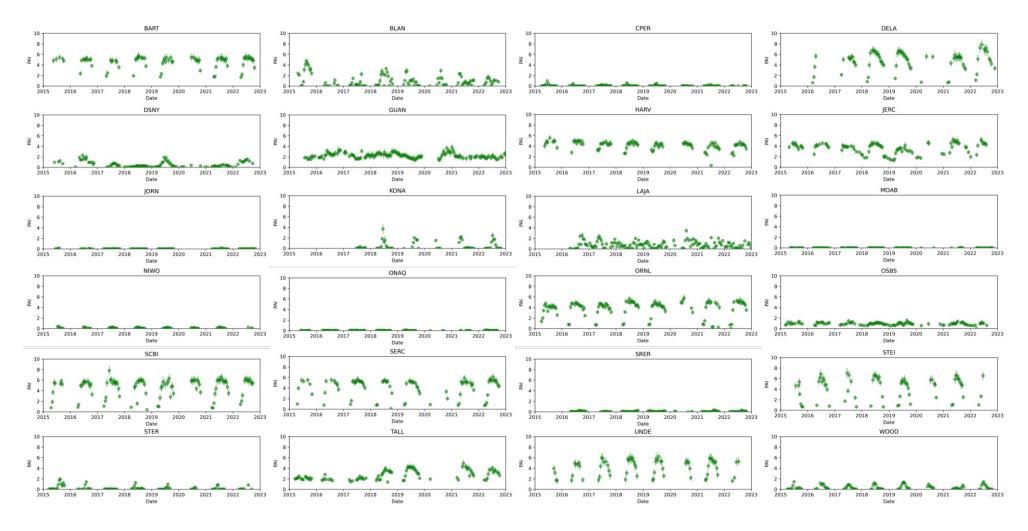
CESS

Biophysical (1/5)

Two potential new co-leads nominated & to be written to

New Users for Better ICOS (NUBICOS) project starting in 2024

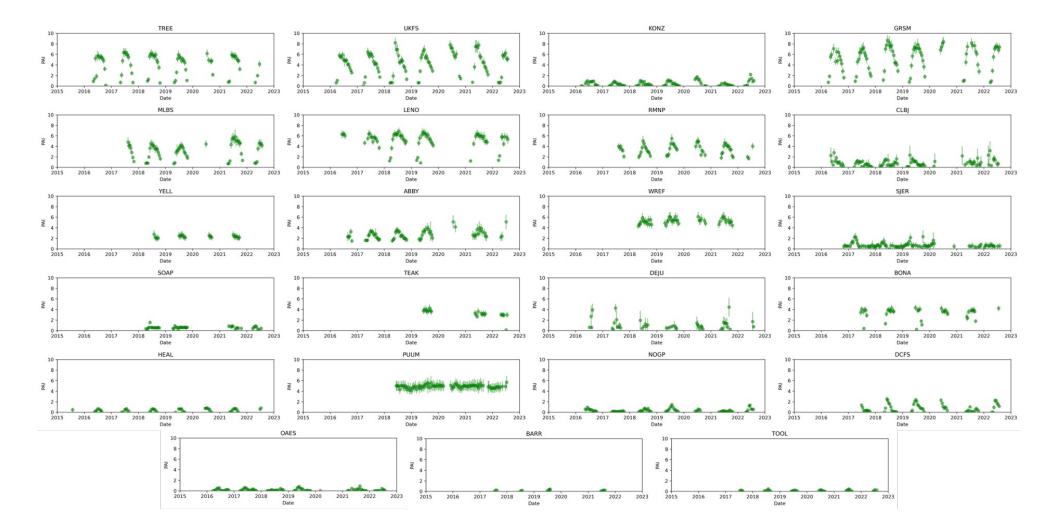
 WP to look at how ICOS can support satellite data calibration and validation (including FAPAR)


Luke & Sylvain working to verify 'CoverPy' with simulated images

- Like HemiPy, but for digital cover photography (DCP) main method being used by TERN for LAI
- Provision of uncertainties following FRM4VEG procedures
- Available on GitHub: https://github.com/luke-a-brown/coverpy

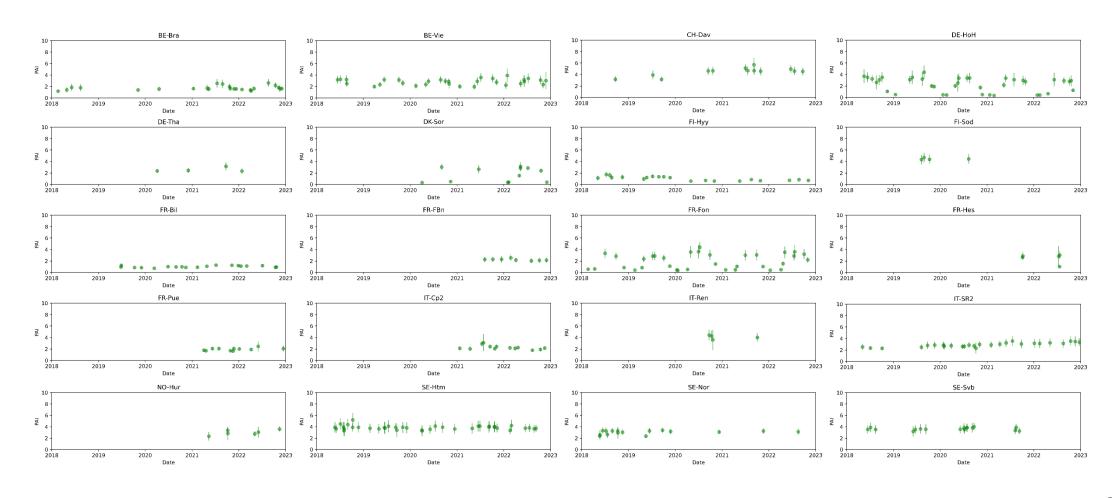
Biophysical (2/5)

GROUNDED EO progress presented at Joint EC-ESA Earth System Science Workshop


• NEON – US (1/2)

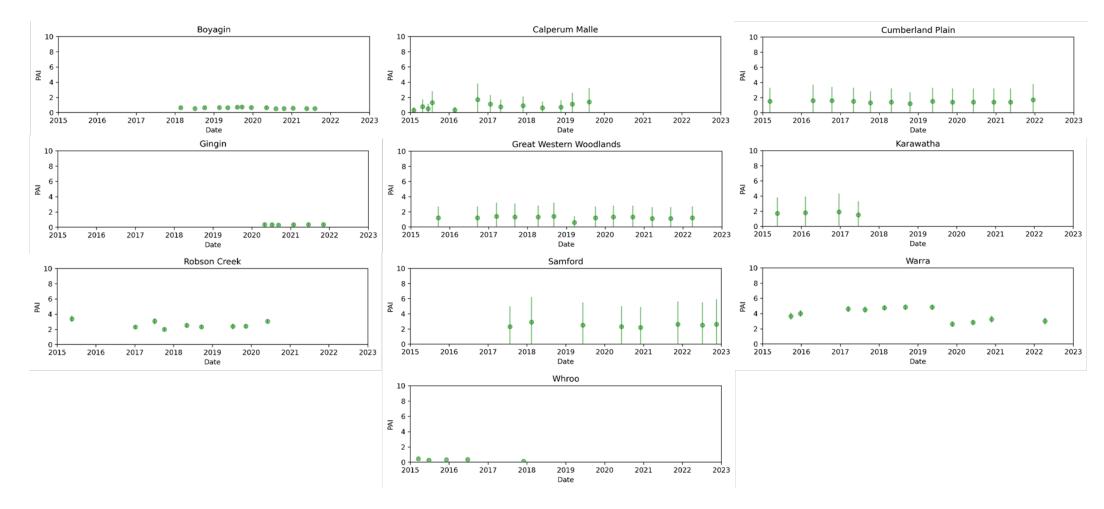
Biophysical (3/5)

GROUNDED EO progress presented at Joint EC-ESA Earth System Science Workshop


• NEON – US (2/2)

Biophysical (4/5)

GROUNDED EO progress presented at Joint EC-ESA Earth System Science Workshop


ICOS - Europe

Biophysical (5/5)

GROUNDED EO progress presented at Joint EC-ESA Earth System Science Workshop

TERN – Australia

Fire

No updates

LST & E (1/6)

Conferences

- ECOSTRESS Science Team Meeting, Ventura, CA, 13-17 Oct, 2023
- TIR Product Harmonization Meeting, ESTEC, Noordwijk, 14-16 Nov, 2023
- Sentinel-3 Val. Team (S3VT) meeting, Darmstadt, Germany, 5-7 Dec 2023

Project News

- Kick Off meeting of TIRCALNet preparation study in November 2023
- Extension of Copernicus LAW stations is ongoing
- ECOSTRESS resumed 5-band acquisitions in March 2023
- ECOSTRESS Collection 2 LST&E products released in Nov 2022
- New L2 data in UTM projection, cloud optimized geotiffs (COG) Improved cloud and water masks
- Improved geolocation matching accuracy
- Surface Biology and Geology (SBG) TIR component in Phase-A and approaching System Requirements Review (SRR) in early November

LST & E (2/6)

Investigation and validation of two all-weather land surface temperature products with in-situ measurements (Meng et al., 2023)

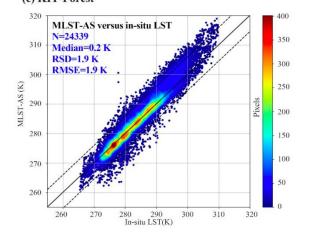
Meteosat Second Generation (MSG) Land Surface Temperature - All Sky (MLST-AS) (Martins et al., 2019)

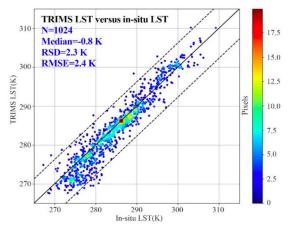
Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless Land Surface Temperature (TRIMS)

LST) (Zhang et al., 2021)

Validation sites:

KIT: Forest

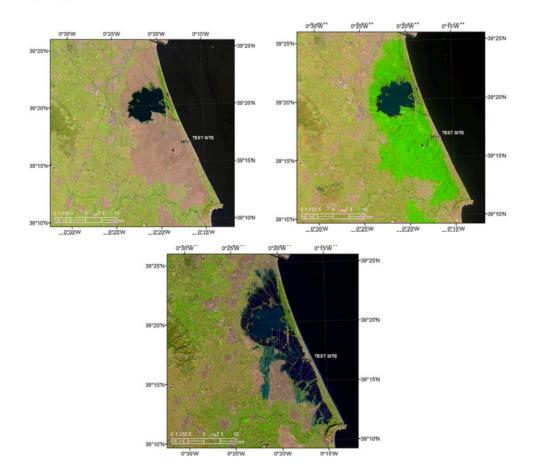

KIT: Geammy


Lake Constances

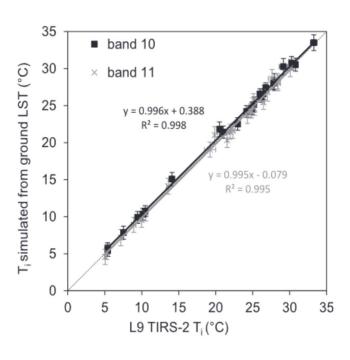
Every Particula

Gobably b, Namibia

Results:


DOI: 10.1080/10095020.2023.2255037

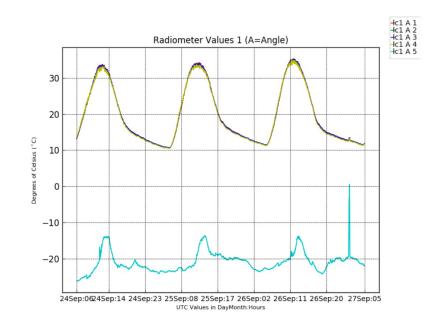
LST & E (3/6)


Evaluation of Landsat-9 TIRS-2 calibrations and LST retrievals: (Niclòs et al. 2023)

- Evaluation of TIRS-2 channels calibration, before and after the reprocessing in March 2023
- Validation of operational Landsat-9 LST product and alternative algorithms.

Validation Site

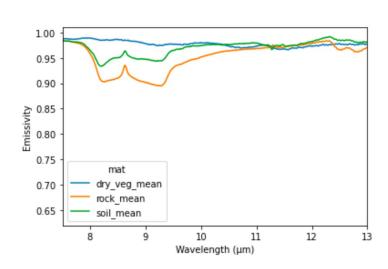
Results:



DOI: 10.1016/j.jag.2023.103576

LST & E (4/6)

New LST Validation Site - La Crau, France


LST & E (5/6)

La Crau first validation results

CNES decision to develop an instrumented site for thermal infrared sensors for future TIR missions, including CNES/ISRO mission TRISHNA, at La Crau, France in addition to the current RadCalNet site

- Dec 2022: Installation of a JPL radiometer (NASA/JPL)
- June 2023: Installation of a CIMEL CE312 radiometer (LOA)

Current processing: Emissivity derived from the fraction vegetation and sample measurements (NASA JPL)

→ Future processing: Emissivity estimation is the main area for improvement

→ Temperature/Emissivity separation using the CIMEL CE312 multispectral data

ECOv002 mean=0.588K std=1.715K - Simulated_LST (K)

Slight positive bias + significant dispersion

Blue dots → visual check of the image (cloud mask / radiometric artefacts)

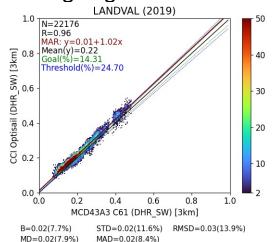
LST & E (6/6)

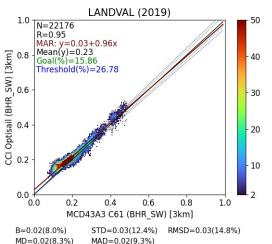
Recent Publications

- Meng et al. (2023), Investigation and validation of two all-weather land surface temperature products with in-situ measurements, Geo-spatial Information Science, DOI: 10.1080/10095020.2023.2255037
- Niclòs et al. (2023), Evaluating Landsat-9 TIRS-2 calibrations and land surface temperature retrievals against ground measurements using multi-instrument spatial and temporal sampling along transects, Int. J. Appl. Earth Obs. Geoinf., 125, 103576

Surface Radiation

• Surface radiation: Jorge Sánchez-Zapero, Angela Erb, Zhuosen Wang




Copernicus C3S

- Sentinel-3 OLCI+SLSTR will be based in a new input data (CGLS Sentinel-3 TOC-r v2.3), which improves the geolocation mismatch between OLCI and SLSTR acquisitions.
- Validation expected by 1st quarter 2024.

ESA CCI LAI/fAPAR vegetation parameters

- Project is able to provide surface albedo products based on OPTISAIL instead the classical approach based on *BRDF retrieval+angular&spectral integration*.
- Currently based on SPOT/VGT & PROBA-V but it is expected a multi-sensor approach (including Sentinel-3, MODIS & VIIRS).
- Preliminary validation is ongoing.

Land Surface Phenology (1/6)

Special issue in **Remote Sensing:**

"Cropland Phenology Monitoring Based on Cloud-Computing Platforms"

Special Issue Editors:

a) Dr. Jochem Verrelst

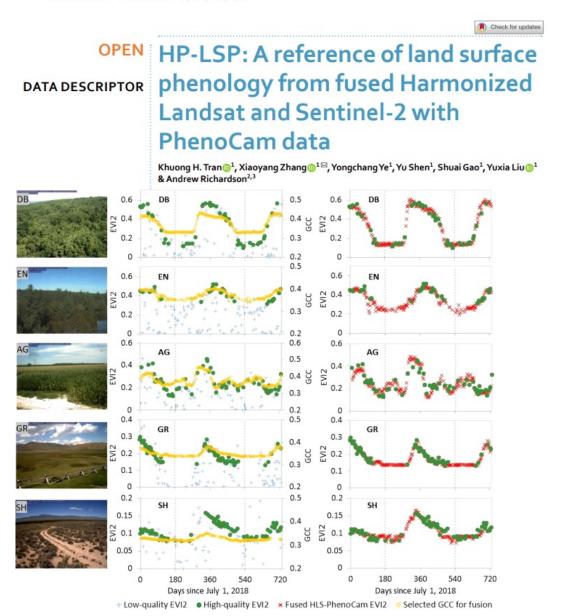
Guest Editor (Laboratory for Earth Observation, Image Processing Laboratory - Scientific Park, University of Valencia, Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain)

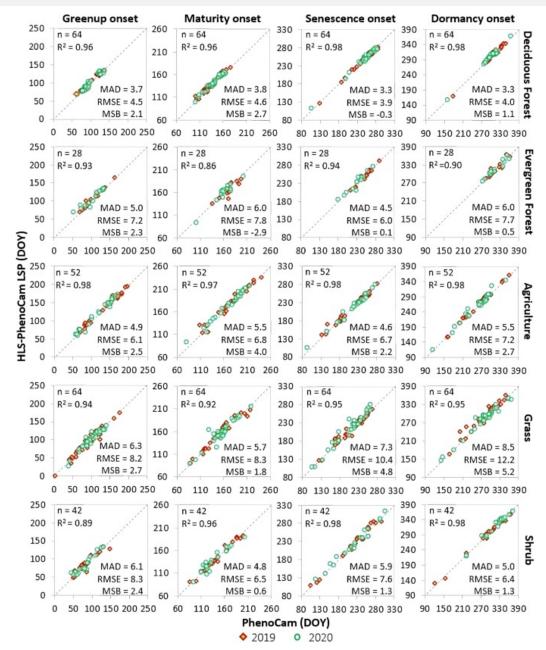
b) Dr. Katja Berger

Guest Editor (Laboratory for Earth Observation, Image Processing Laboratory - Scientific Park, University of Valencia, Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain)

c) Dr. Egor Prikaziuk

Guest Editor (Faculty Geo-Information Science and Earth Observation, ITC, University of Twente, Enschede, The Netherlands)


d) Prof. Dr. Clement Atzberger


Guest Editor (Institute of Geomatics, University of Natural Resources and Life Sciences, 1090 Vienna, Austria)

Deadline for manuscript submissions: 29 February 2024

Land Surface Phenology (2/6)

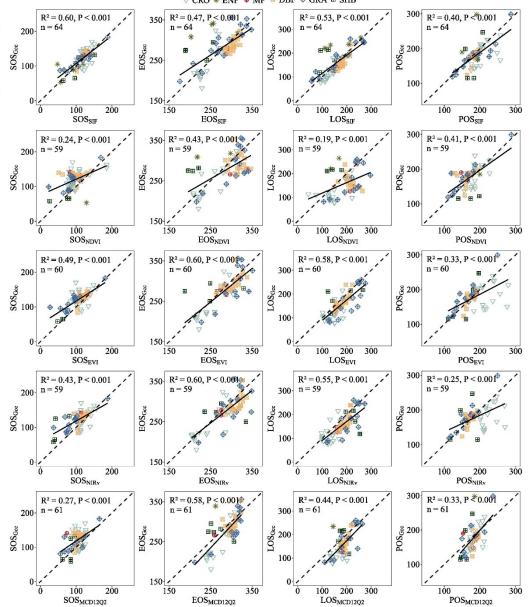
scientific data

Land Surface Phenology (3/6)

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs



Solar-induced chlorophyll fluorescence captures photosynthetic phenology better than traditional vegetation indices

Jingru Zhang ^{a,b,*}, Alemu Gonsamo ^a, Xiaojuan Tong ^b, Jingfeng Xiao ^c, Cheryl A. Rogers ^a, Shuhong Qin ^{a,d}, Peirong Liu ^b, Peiyang Yu ^b, Pu Ma ^e

LSP (TROPOMI SIF, MODIS NDVI, EVI, NIRv, and MCD12Q2)- compared with phenocams (Gcc)

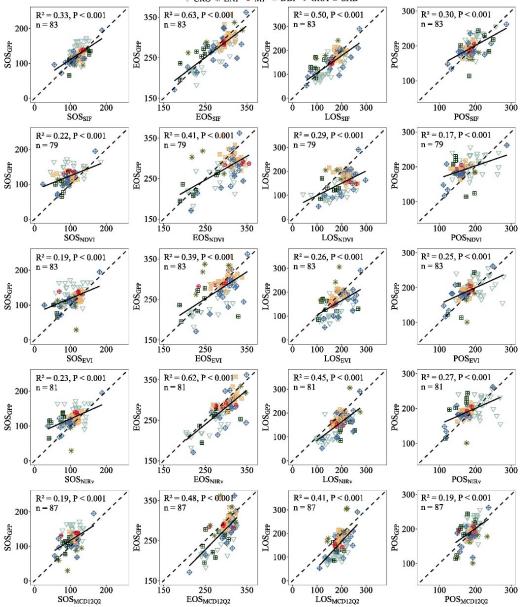
broadleaf forest (DBF), evergreen needleleaf forest (ENF), mixed forest (MF), shrubland (SHB), grassland (GRA), and cropland (CRO).

Land Surface Phenology (4/6)

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

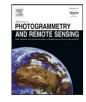


Solar-induced chlorophyll fluorescence captures photosynthetic phenology better than traditional vegetation indices

Jingru Zhang ^{a,b,*}, Alemu Gonsamo ^a, Xiaojuan Tong ^b, Jingfeng Xiao ^c, Cheryl A. Rogers ^a, Shuhong Qin a,d, Peirong Liu b, Peiyang Yu b, Pu Ma e

> LSP (TROPOMI SIF, MODIS NDVI, EVI, NIRv, and MCD12Q2)- compared with GPP

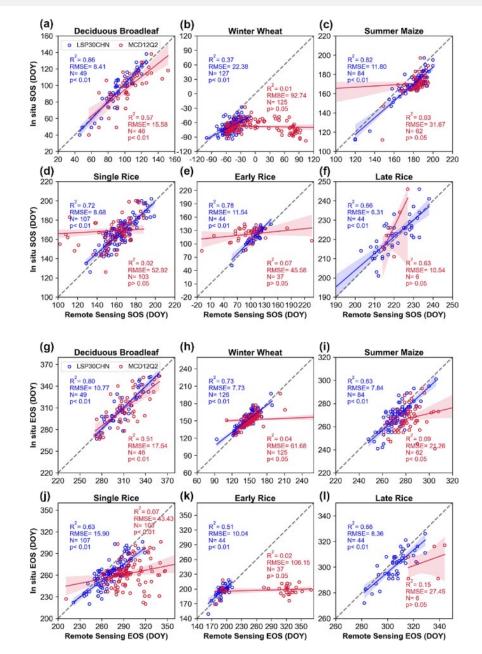
broadleaf forest (DBF), evergreen needleleaf forest (ENF), mixed forest (MF), shrubland (SHB), grassland (GRA), and cropland (CRO).


Land Surface Phenology (5/6)

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs



A robust and unified land surface phenology algorithm for diverse biomes and growth cycles in China by using harmonized Landsat and Sentinel-2 imagery

Jilin Yang ^{a,b}, Jinwei Dong ^{b,*}, Luo Liu ^c, Miaomiao Zhao ^d, Xiaoyang Zhang ^e, Xuecao Li ^f, Junhu Dai b, Huanjiong Wang b, Chaoyang Wu b, Nanshan You b, Shibo Fang g, Yong Pang h, Yingli He^b, Guosong Zhaoⁱ, Xiangming Xiao^j, Ouansheng Ge^b,

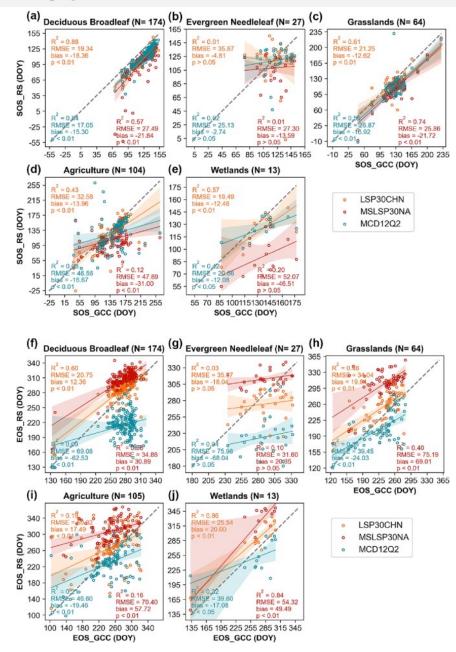
LSP (LSP30CHN) compared with in-situ observations for SOS (a-f) and EOS (g-l) dates across six vegetation types.

Land Surface Phenology (6/6)

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs



A robust and unified land surface phenology algorithm for diverse biomes and growth cycles in China by using harmonized Landsat and Sentinel-2 imagery

Jilin Yang ^{a,b}, Jinwei Dong ^{b,*}, Luo Liu ^c, Miaomiao Zhao ^d, Xiaoyang Zhang ^e, Xuecao Li ^f, Junhu Dai ^b, Huanjiong Wang ^b, Chaoyang Wu ^b, Nanshan You ^b, Shibo Fang ^g, Yong Pang ^h, Yingli He^b, Guosong Zhaoⁱ, Xiangming Xiao^j, Quansheng Ge^b,

LSP30CHN and other two phenology compared with PhenoCam across five vegetation types in North America.

