
Land surface Phenology Subgroupproduct Synthesis and validation status

Jadu Dash¹ & Matthew O. Jones ^{2,3}

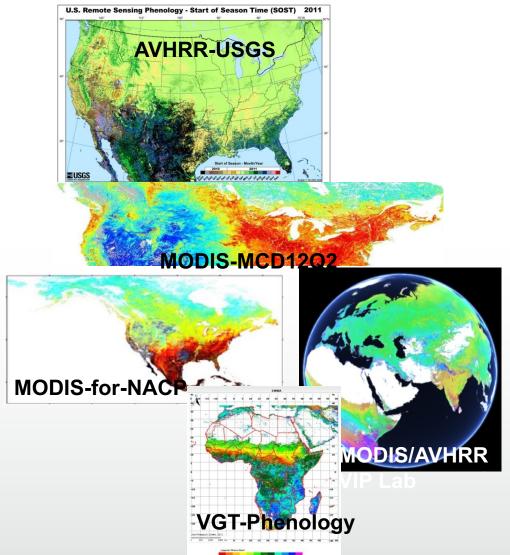
 ¹ Global Environmental Change and Earth Observation Research Group, Geography and Environment, University of Southampton, Southampton, United Kingdom
²The University of Montana Flathead Lake Biological Station, Polson, MT
³Numerical Terradynamic Simulation Group, The University of Montana, Missoula, MT

Phenology- subgroup

- Satellite data increasingly used for LSP
- First International Workshop 2010
- Second International Workshop in 2012

Citation

è.


Source: ISI WoS

Aim is to:

- develop a plan on how to effectively use ground- to airborne-level phenological measurements to validate satellite-based land surface phenology products
- internationally-coordinate remote sensing land surface phenology validation and inter-comparison activities

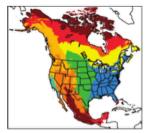
Phenology- products

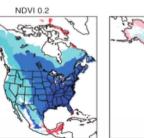
LAND SURFACE PHENOLOGY: the seasonal pattern of variation in vegetated land surfaces as characterized by remote sensing.

- While the observed patterns are related to biological phenomena, land surface phenology is distinct from traditional definitions of vegetation phenology.
- Traditional definitions refer to specific life cycle events such as budbreak, flowering, or leaf senescence using in-situ observations of individual plants or species.

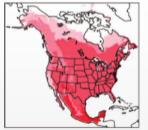
Some examples of Phenology products

Phenology- products

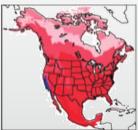

	MCD12	VIP	MODIS-for-	USGS-RSP	VGT4Africa
	Q2		NACP		
Satellite	Terra	AVHRR/	MODIS	AVHRR,	SPOT VGT
sensor	MODIS ¹	MODIS ²		MODIS	
Spatial	Global	Global	North America	USA (lower	Africa
domain				48)	
Spatial	500m	0.05 deg	500m, 250m	1000m, 250m	1000m
resolution					
Period of	2001-	1980-2013	2000-2013	1989 - 2013	2007-2013
record	2013				
Time-series	EVI ⁴	NDVI ⁵ /EVI2	NDVI, EVI, LAI	NDVI	NDVI
source data					
Projection	SIN ⁶	Geographic	SIN	LAEA ⁷	Geographic
Data Delivery	Web	Direct	Web services and	Direct	Ftp
Mechanism(s)	services	ftp/http ⁸	direct ftp/http	ftp/http ⁸	

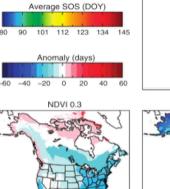

Most of the products use different data processing methods which makes validation challenging

Phenology- products

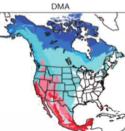

Southampton

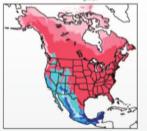
One Dataset, Many Methods





HANTS-FFT

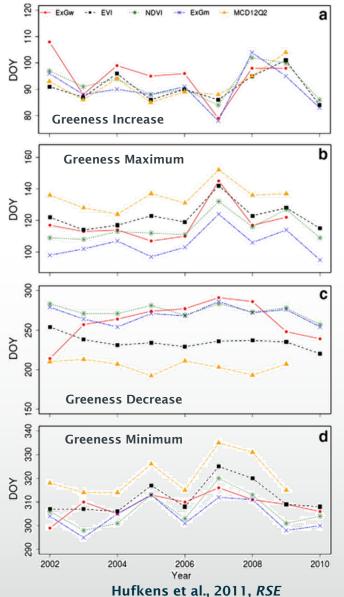

PAT



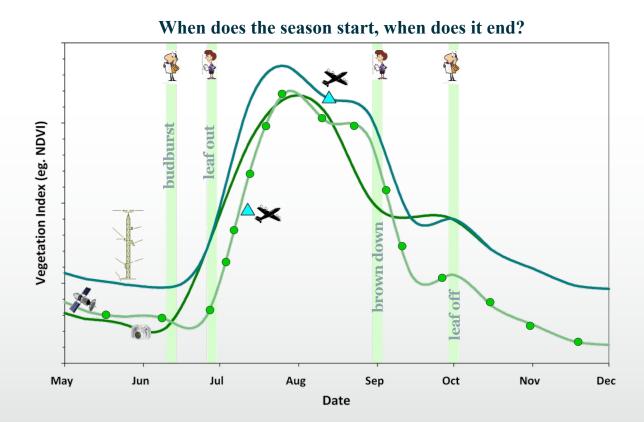
Timesat

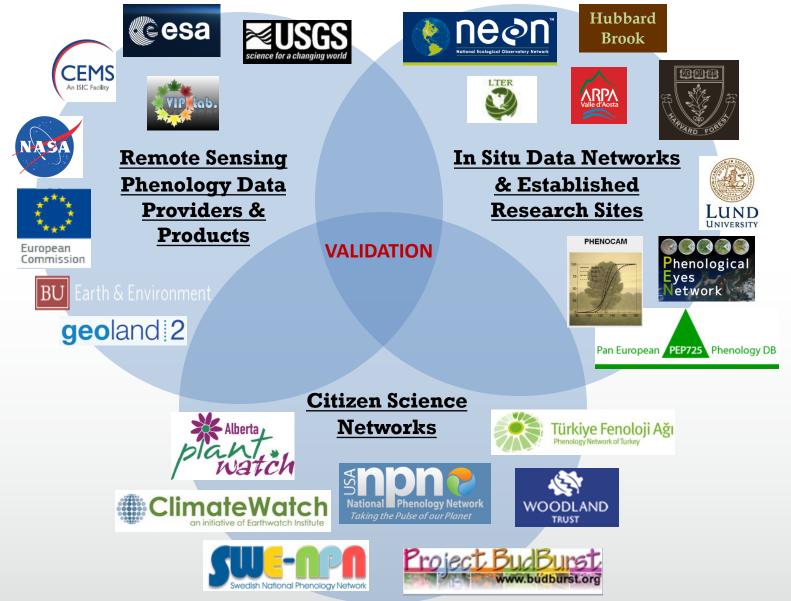
Gaussian

Midpoint_{pixel}



Midpoint_{cluster}


White et al., 2009, Global Change Biology


Phenology-validation

The LPV Phenology Group is developing a protocol to use ground, camera, tower and airborne phenological measurements to validate satellite-based phenology products. (Need enough information /Literature to develop this protocol)

Southampton

Phenology- validation

Phenology-validation

Ground based

Citizen science, voluntary based, point-to pixel problem

Ground based (intensive monitoring)

Limited coverage, point-to pixel problem

Satellite based (!)

High spatial resolution data, scaling up, Data availability

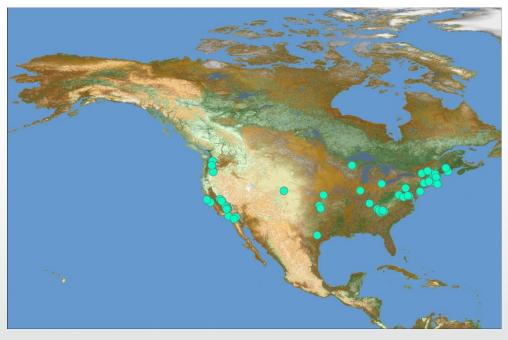
Camera based

High spatial (mostly horizontal) and hyper temporal resolution , effect of understorey, dominate foreground

AND

WOO

Phenology- validation


Core validation site selection

Level1 Sites: Sites with phenocams and good representation of measurements of citizen observations or Detail sampling across the growing season (at least 60)

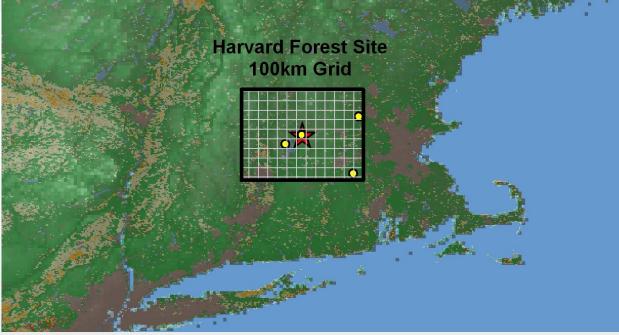
Level 2 Sites: Sites with detailed spatial and temporal ground phenological observations incorporating multiple resolution scaling opportunities (ideally incorporating advanced instrumentation such as spectral radiometers, PAR sensors, understory cameras, etc.)

Phenology- validation site: type 1 Southampton

- Phenocam sites with at least 30 ground observations in 100km radius in USA.
- Working with Phenocam group and phenology network to define high quality sites.
- Goal 60 sites globally

Phenology- validation site: type 2 Southampton

Phenocam Sites, Ground Observations, Met/Flux Towers, Instrumentation


Site Name	Country	Cover Type			
Torgnon – Tellinod	Italy	Grassland			
Torgnon – Tronchaney	Italy	Larch Forest			
Park Falls	USA	Deciduous Broadleaf	More Sites Needed:		
Hyytiala	Finland	Boreal Conifer	Savanna / Woody		
Harvard	USA	Mixed Forest	Savanna		
Bartlett	USA	Mixed Forest			
Howland	USA	Boreal Hardwood Trans	> Croplands		
Takayama	Japan	Deciduous Broadleaf	> Shrublands		
Takayama	Japan	Evergreen Coniferous			

Phenology- data distribution

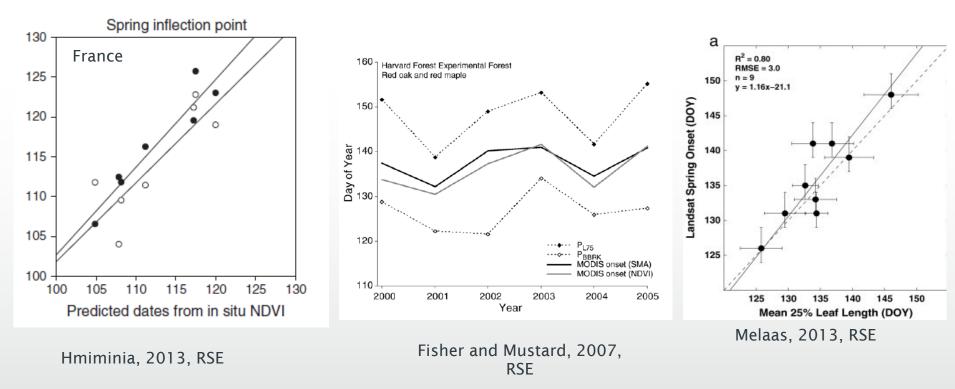
Southampton

Site Data Packages Include:

- > The complete suite of available remote sensing phenology products.
- > Phenocam images
- Ground Observations
- Instrument Data (eg. CO2 fluxes, PAR Sensors, spectrometer data)

Goal: to allow for multiple temporal and spatial resolution scaling opportunities

Phenology- GCOS Requirements


Land Surface Phenology is not an ECV, but a strong candidate for EBV. Given land surface phenology is one of the strongest measure of impact of climate on vegetation and interest of general public, there is a strong case to include this as an ECV.

German Climate Observing Systems

Inventory report on the Global Climate Observing System (GCOS)

Phenology- LPV validation stage

Some attempts were made to validate LSP, mostly either at specific location or using regional data

Phenology- LPV validation stage

Stage 1	Product accuracy is assessed from a small	Product Vs Ground
Validation	(typically < 30) set of locations and time	
	periods by comparison with in-situ or other	
	suitable reference data.	
Stage 2	significant set of locations and time periods by	Product vs
Validation	comparison with reference in situ or other	Product vs (more)
	suitable reference data.	Ground
	Spatial and temporal consistency of the	
	product and with similar products has been	
	evaluated over globally representative	
	locations and time periods.	

Phenology- Conclusion

- A consensus needs to be reached regarding what LSP metrics mean in regards to biophysical vegetation properties, i.e. Should LSP start of season equate to bud burst, leaf unfolding, or full leaf expansion?
- Current validation efforts incorporate a range of methods to define LSP metrics and protocols for field data collection. Future efforts need to incorporate data from an established field protocol (eg. USA-NPN) and compare these to the range of LSP metrics derived across sensors and products.

Southamn