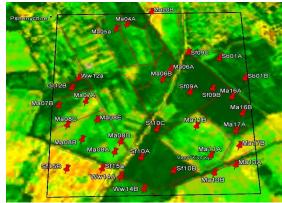


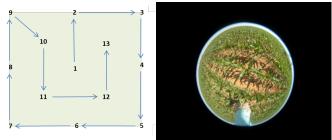
FAPAR: In-situ protocol(s)

Nadine Gobron¹ and Arturo Sanchez-Azofeifa²

(1) EC-JRC / Institute for Environment and Sustainability, Ispra, Italy
(2) Centre for Earth Observation Science (CEOS), University of Alberta , Edmonton, Alberta, Canada



Single Date/Data Protocol



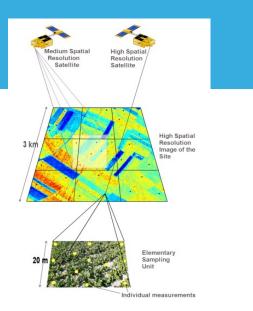
Guidelines for field campaigns are provided considering up-scaling needs for validation of 1 km products

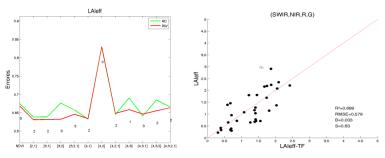
- Size of the site: 3x3 km
- Number of ESUs: 30- 50 sampling units
- Size of the ESU: ~15 m (SPOT5)
- Sampling the site: Stratified, based on land cover
- Sampling the ESU: 10 -12 shots
- Instruments: Digital Hemispherical Photography (DHP)
- Processing: CAN-EYE software (INRA-Avignon)

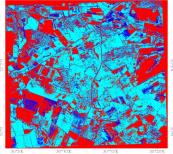
Sampling the site

Sampling the ESU - DHP

 $fAPAR^{BS}(\theta_{s}) = P_{o}(\theta_{s}) \quad fAPAR \sim fIPAR$ $fAPAR^{BS}_{Day} = \frac{\sup_{\substack{sunset \\ sunset}} \int \cos(\theta)P_{o}(\theta)d\theta}{\int \cos(\theta)d\theta} \quad Black Sky$ $fAPAR^{WS} = \frac{1}{\pi} \int_{0}^{2\pi\pi/2} P_{o}(\theta)\cos\theta\sin\theta d\theta d\varphi = 2 \int_{0}^{\pi/2} P_{o}(\theta)\cos\theta\sin\theta d\theta \quad White Sky$


Source: Camacho, FAPAR Workshop^{Joint} 2014


Single Date/Data Data processing


Generating ground-based maps

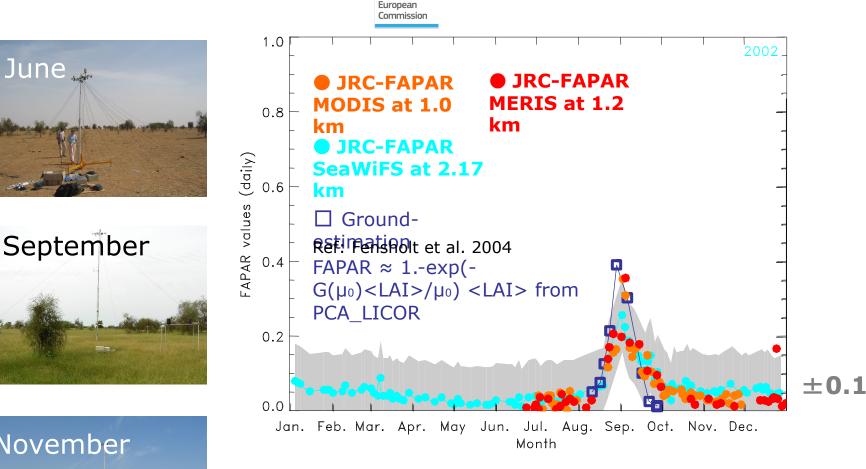
- HR (SPOT5) images are acquired supported by ImagineS, Global Land Service and Take5 initiatives.
- Up-scaling (VALERI)
 - Evaluation of the sampling
 - Regression method: iteratively reweighted least squares algorithm
 - Selection of band combination (lower RMSE)
 - Convex Hull: Quality Flag
 - Application to high resolution imagery
 - High resolution maps are produced and distributed

Source: Camacho, FAPAR Workshop

EOS Data Set

Ground-based estimations are categorized with respect to their anticipated radiation transfer regime to better understand sources of uncertainties.

RT regime (adapted from Davis and Marshak, 2004)	Field Site Identification	Land cover type
"Fast" variability1-D RT theory on fulldomain	Dahra and Tessekre (Fensholt et al. 2004) Sevilletta (Turner et al. 2005)	semi-arid grass savannah desert grassland
"Slow" variability 1-D RT theory locally and Independent Pixel Approximation (IPA) on full domain	Bondville (Turner et al. 2005) Harvard (Turner et al. 2005) De Inslaag (Gond et al. 1999) Konza (Turner et al. 2005)	corn and soybean conifer/broad-leaf forest conifer/broad-leaf/shrub forest Grassland/shrub-land/cropland
"Resonant" variability 3-D RT theory	Metolius (Turner et al. 2005) Mongu (Huemmrich et al. 2005)	dry needle-leaf forest shrub land/woodland


Gobron N., et. al. (2006) 'Evaluation of FAPAR Products for Different Canopy Radiation Transfer Regimes: Methodology and Results using JRC Products Derived from SeaWiFS and Ground-based Estimations', JGR, 111, D13110, DOI 10.1029/2005JD006511

Validation of iation

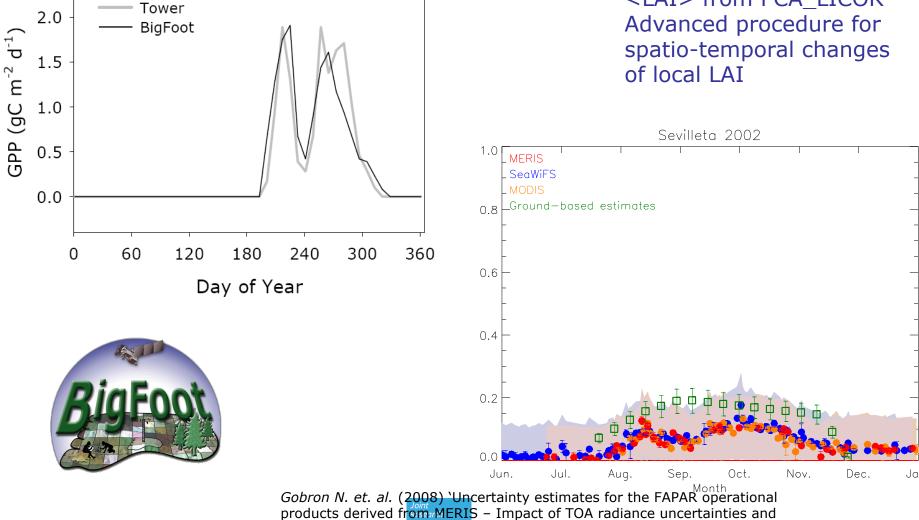
"Fast" variability

June

November

The FAPAR values are very small over this semi-arid grass savannah, and agree with ground estimations within the predefined daily accuracy of ±0.1

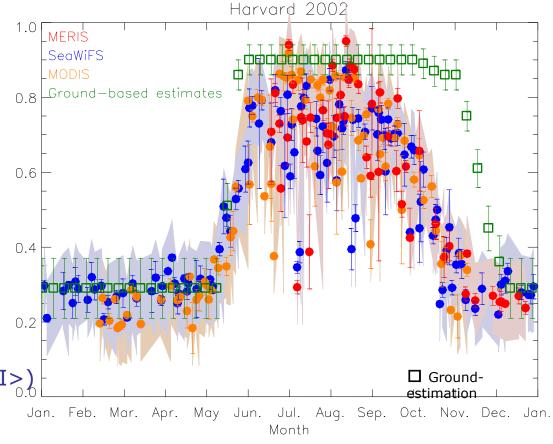
Gobron N. et. al. (2008) 'Uncertainty estimates for the FAPAR operational products derived from MERIS - Impact of TOA radiance uncertainties and validation with field data', RSE, Vol. 112, pp 1871-1883, doi:10.1016/j.rse.2007.09.011.



2.5

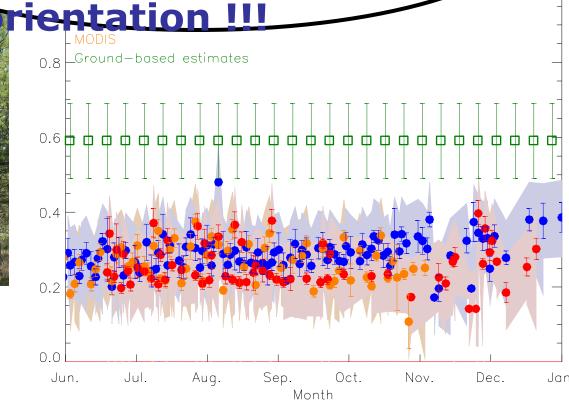
"Fast" variability

Ref: Turner et al. 2005 FAPAR \approx 1.-exp(-0.5<LAI> <LAI> from PCA_LICOR


validation with field data', RSE, Vol. 112, pp 1871–1883,

Validation of Apple "Slow" variability

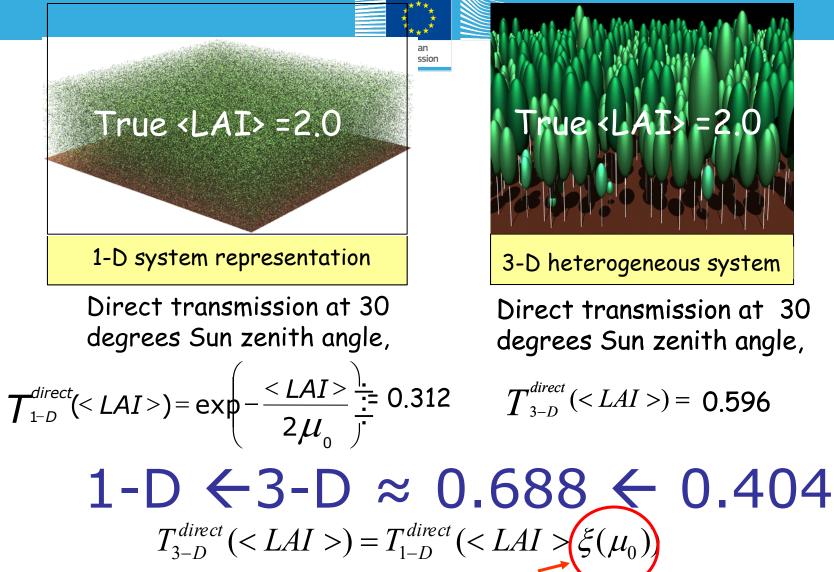
Ref: Turner et al. 2005 FAPAR \approx 1.-exp(-0.58<LAI>) <LAI> from PCA_LICOR Advanced procedure for spatio-temporal changes of local LAI


Gobron N. et. al. (2008) 'Uncertainty estimates for the FAPAR operational products derived from MERIS – Impact of TOA radiance uncertainties and validation with field data', RSE, Vol. 112, pp 1871–1883,

European Commission

"Resonant"

assumes random distribution of black leaves with no preferred



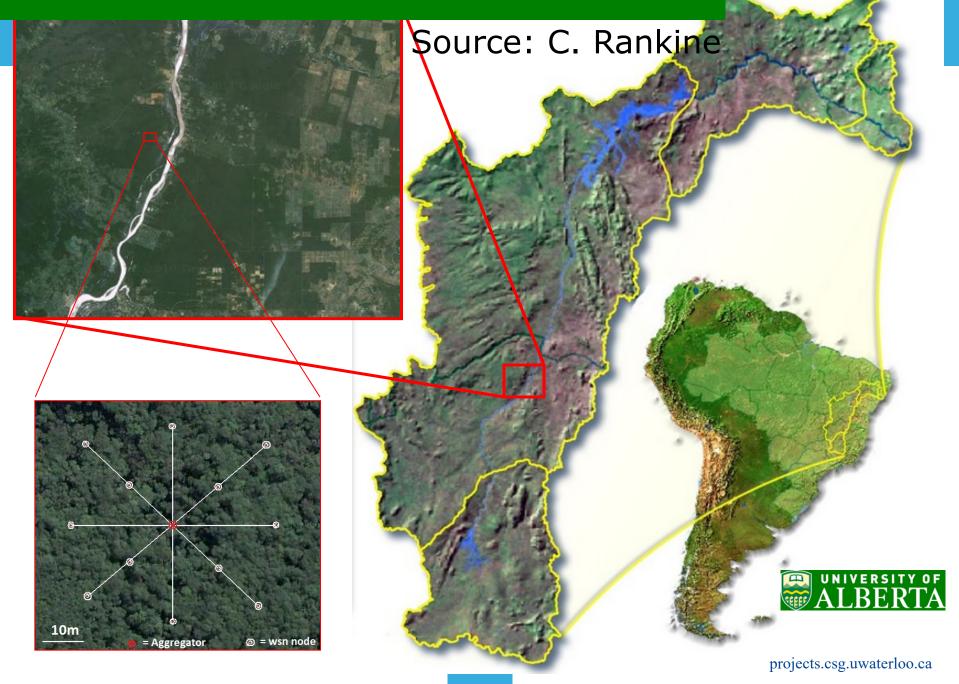
Gobron N. et. al. (2008) 'Uncertainty estimates for the FAPAR operational products derived from MERIS – Impact of TOA radiance uncertainties and validation with field data', RSE, Vol. 112, pp 1871–1883,

Ref: Turner et al. 2005 FAPAR \approx 1.-exp(-0.5<LAI>) <LAI> from PCA_LICOR Advanced procedure for spatio-temporal changes of local LAI Gobron N

Problem related to <u>clumping</u>(1)

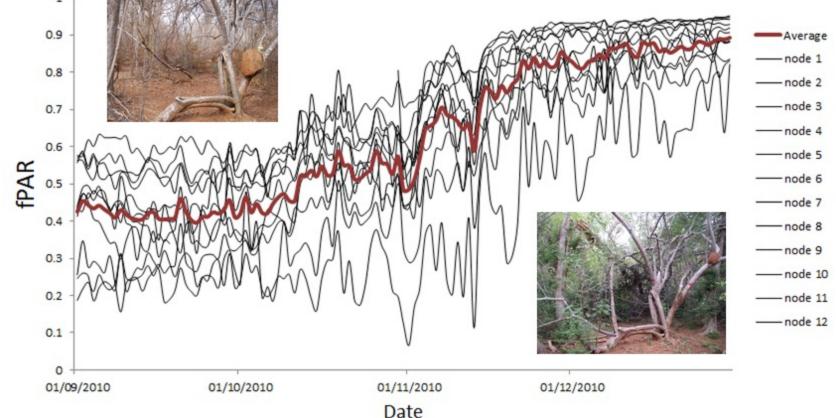
Domain-averaged structure factor

Pinty B. et. al. (2006) Simplifying the interaction of land surfaces with radiation for relating fremote sensing products to climate models', JGR,

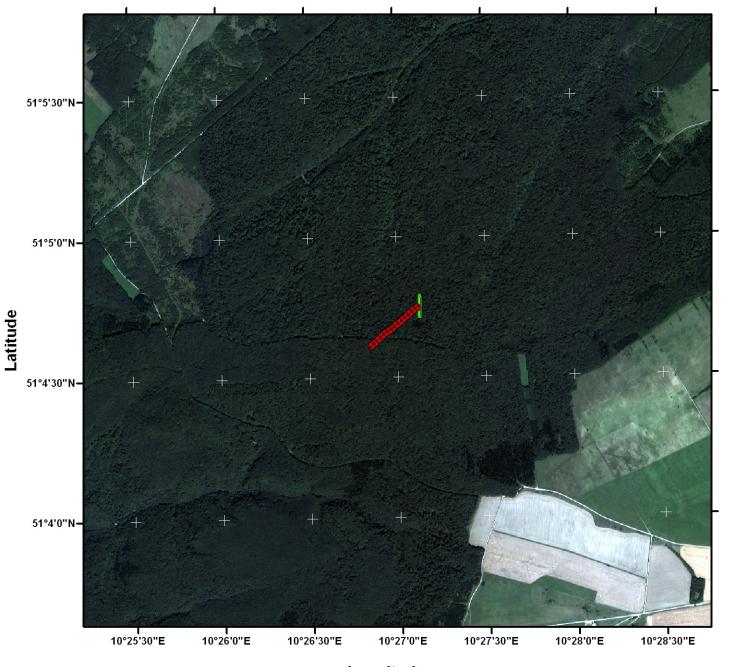


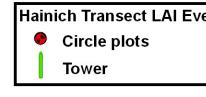
Do we have real networks oriented to advance FAPAR research?

- We have several international initiatives around the world, but...
- FAPAR is not their main objective,
- FAPAR is seen as sub-product of other measurements,
- Measurements are in many cases restricted to single sensors/instruments,
- No comprehensive standardized FAPAR database exists to promote inter-comparison between different networks,
- Funding agencies put little or no priority on funding FAPAR initiatives as a whole but they have to be part of other larger initiatives.


Brazilian tropical dry forest, Minas Gerais

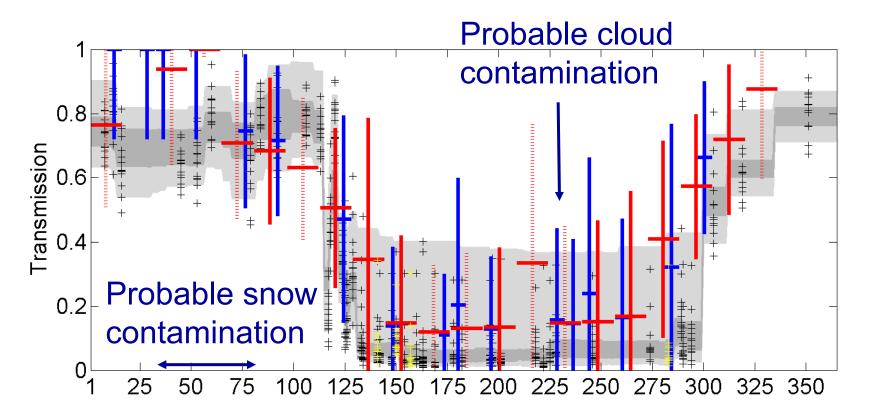
FAPAR During Leaf Flush


40% woodv area FAPAR variability across network in dry



Sanchez at el., 2011 IEEE eScience

Brazilian tropical dry forest, Minas Gerais


Dataset: Ikonos RGB 09/25/2

Created by Eric Thomas

Longitude

Pinty etal., (2011): Remote Sensing of Environment

Comparison between TIP retrieved transmission and in-situ estimates

MODIS 16-dayMISR 8-day

Pinty etal., (2011): Remote Sensing of Environment

FAPAR Strategy Validation

aII	Ugl	IQ II

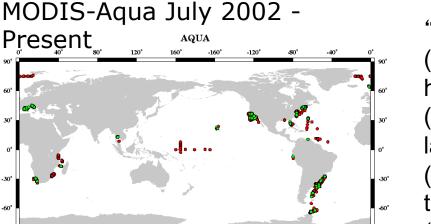
Ground-based Knowledge	Product	Retrieval
Capitalize on FAPAR/FIPAR ^(*) acquired over multiple years to reconstruct at least over one vegetation seasonal cycle.	Validation with expected accuracy < ± 0.1 (< GCOS!) Seasonal verification	
Measurements of background albedo simultaneously with transmission (spatial sampling along transect). Webcam to assess variability in effective scattering albedo (linked to leaf colors) of the canopy in the VIS and NIR.	Simulated ground-based and EO data using 3-D RT over typical land cover scenes. Validation taken into account definition and assumption.	
Structural knowledge (using Lidar, etc) – possible only over few sites	Simulated ground-based and EO data using 3-D RT over realistic scenes. Validation taken into account definition and all assumptions.	

(*) Use (and support) current networks, such as Fluxnet or Direct, etc ... with a complete description of measurement protocol.

Visual assessment of 1Km² Google Maps cutouts:

- Number and extension of Plant Functional Types in MODIS pixel
- PFT of the tower location equal to dominant PFT of the area
- confidence in classification (low, medium, high)
- qualitative estimation of landscape heterogeneity (low, medium, high)

Accepted


A. Cescatti, 2012

Joint Research Centre

Source: SeaDAS Training ~ NASA Ocean Biology Processing

Group

color key:

valid match

.60

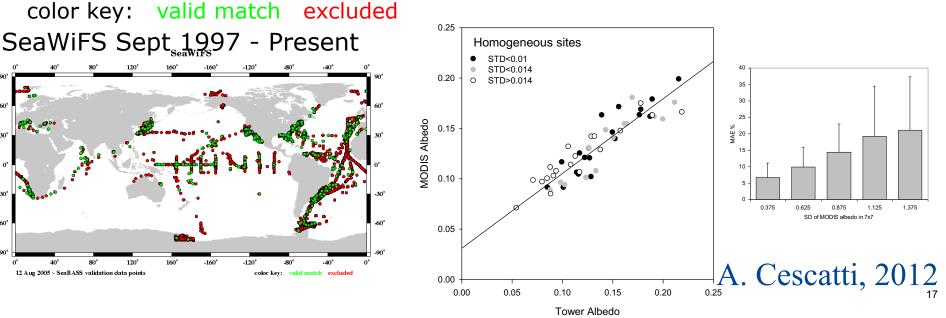
80

80

12 Aug 2005 ~ SeaBASS validation data points

14 Feb 2006 ~ SeaBASS validation data points

120


match-up" defined as:

(1) in situ measurement collected within +/- 3 hours of satellite overpass

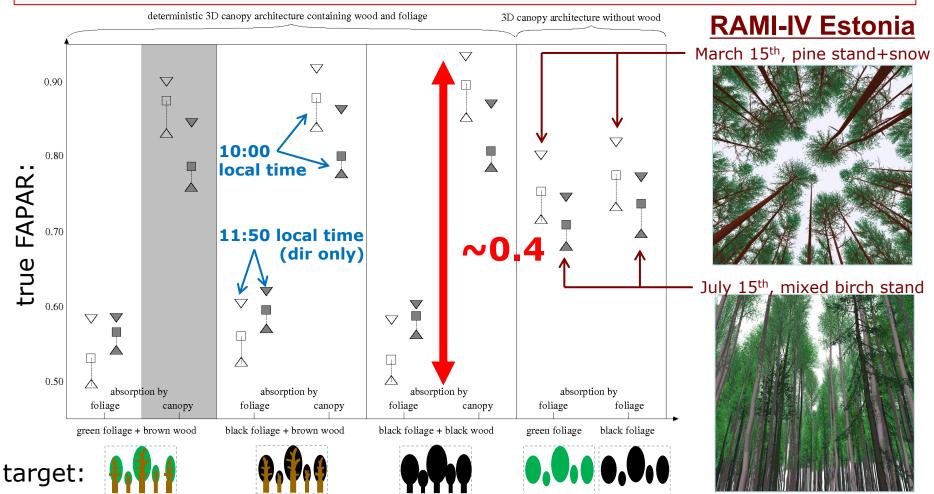
(2) 5x5 satellite pixel box centered on in situ lat/lon target

(3) homogeneity and sensor/solar geometry tests applied

(4) filtered median of valid (non-flagged) pixels, if >50% remain

In-situ measurements (1)

Criteria that define **what do we want to measure** that influences the calibration/validation of a given spaceborne sensor.


 Linkages to spatial and spectral resolution of the sensor(s) to be calibrated/validated.

FAPAR estimations

"Choice of 'truth' strongly impacts validation results."

In-situ measurement (1)

Criteria that define **what do we want to measure** that influences the calibration/validation of a given spaceborne sensor.

 Linkages to spatial and spectral resolution of the sensor(s) to be calibrated/validated.

Sensor specification:

- Characterization of sensor spectral and angular response.
- Definition of minimum requirements.
 - Development of intercomparison of different sensors
- Look at detector properties and intercomparison

Calibration and maintenance:

- Absolute values and consistency on setups.
- Sensor frequency change important for sensors looking up.
- Look at indoor vs outdoor stability \rightarrow related to calibration issues.

Spatial:

- Recommendation for geostatical approaches for sensor deployment
 → two stage approach: sampling the pdf (dynamic)
- Preliminary evaluation of the FPAR field using Hemispherical Cameras for the identification of sensor deployment → two stage approach

Temporal:

- Requirements for temporal sampling.
- Related to product that wants to be validated.

Error estimates:

- Stability and variability of sensors produced by the same company
- Meteoc2: intercomparison of PAR sensors at ISPRA (2015)
- How good the methods area.

