Soil Moisture Focus Group

T. J. Jackson and W. Wagner January 31, 2014

Outline (Part 2)

- Validation methods used for each product
 - Five methodologies (SMAP Examples)
- Most important (in situ) reference data set(s)
 - International Soil Moisture Network
 - USDA ARS Watersheds
 - JAXA Sites
- Dealing with
 - Spatial scale (in situ data representativeness at pixel scale, different spatial product resolutions, etc.),
 - Global representation of sites
 - Instrumentation and installations of in situ sites
 - Metrics used

SMAP Cal/Val Program

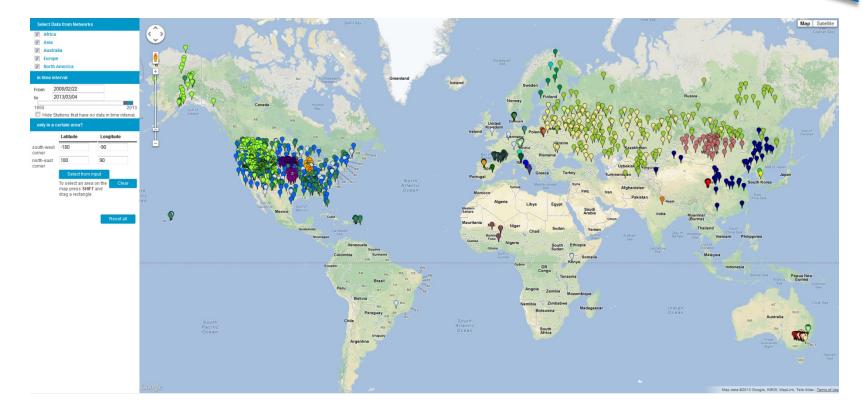
• Available on the SMAP website

- http://smap.jpl.nasa.gov/

- Every effort was made to incorporate best practices and a wide range of methodologies
 - Incorporates CEOS and WGCV LPV guidance (i.e. Validation Stages)
 - Input from team and Cal/Val Working Group
 - Series of open workshops
 - Reviews

SMAP L2-L4 Soil Moisture Product Validation Methodologies

Methodology	Role	Constraints	Resolution		
Core Validation Sites	Accurate estimates of products at matching scales for a limited set of conditions	In situ sensor calibrationLimited number of sites	In Situ TestbedCal/Val Partners		
Sparse Networks	One point in the grid cell for a wide range of conditions	In situ sensor calibrationUp-scalingLimited number of sites	In Situ TestbedScaling methodsCal/Val Partners		
Satellite Products	Estimates over a very wide range of conditions at matching scales	ValidationComparabilityContinuity	Validation studiesDistribution matching		
Model Products	Estimates over a very wide range of conditions at matching scales	ValidationComparability	Validation studiesDistribution matching		
Field Campaigns	Detailed estimates for a very limited set of conditions	ResourcesSchedule conflicts	Airborne simulatorPartnerships		

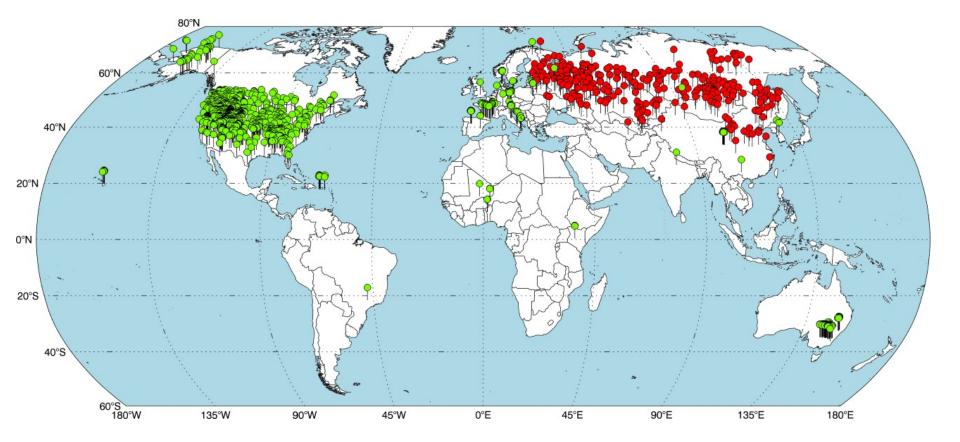

Outline (Part 2)

- Validation methods used for each product
 - Five methodologies (SMAP Examples)
- Most important (in situ) reference data set
 - International Soil Moisture Network
 - USDA ARS Watersheds
 - JAXA Sites
- Dealing with
 - Spatial scale (in situ data representativeness at pixel scale, different spatial product resolutions, etc.),
 - Global representation of sites
 - Instrumentation and installations of in situ sites
 - Metrics used

International Soil Moisture Network (ISMN) 37 networks

http://ismn.geo.tuwien.ac.at/

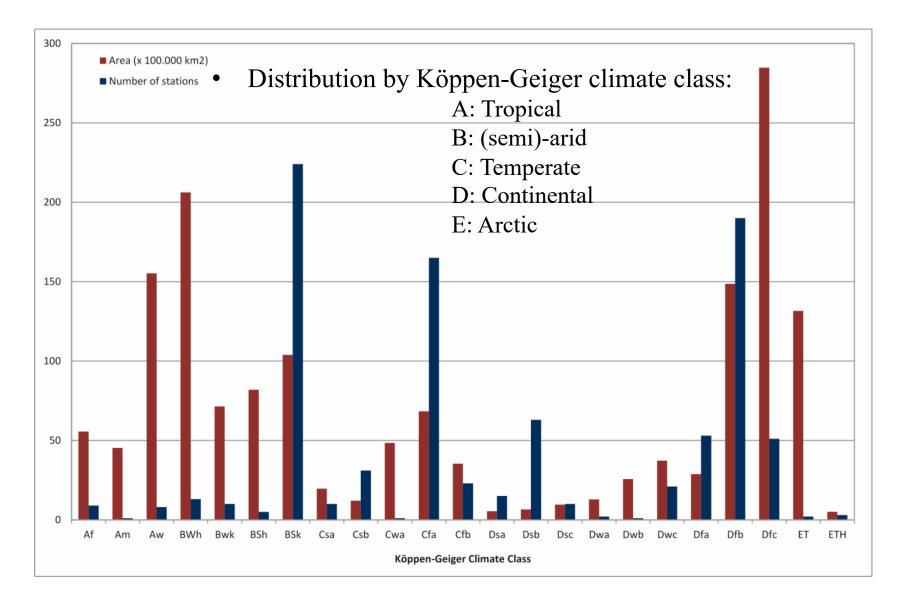
37 networks ~1500 stations Period 1952 - now



ISMN Recent Progress

- Increase in number of networks/stations
- Most datasets updated automatically in NRT
- New quality control procedures and spatial representativeness measures developed

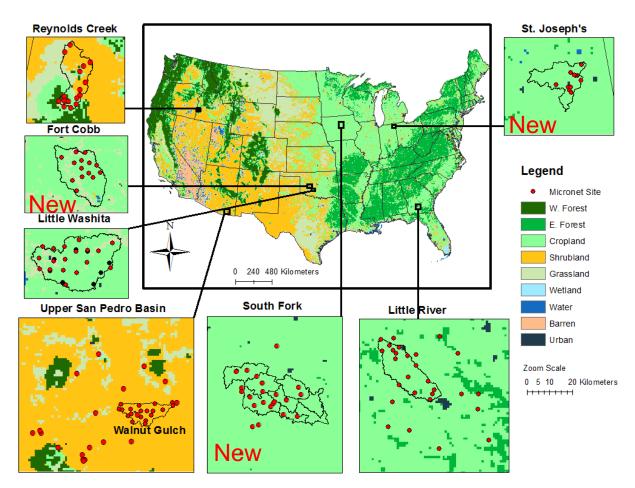
ISMN Spatiotemporal Availability


• Red = inactive Green = active

ISMN Periods of Record

ISMN Representativeness

ISMN Quality Assessment


- Spectrum-based quality control
- Physical plausibility checks
- Spatial representativeness (random) error at network level based on triple collocation

ISMN References

- Dorigo, W., Van Oevelen, P., Wagner, W., Drusch, M., Mecklenburg, S., Robock, A., Jackson, T. (2011), "A new international network for in situ soil moisture data", Eos 92 (17), pp. 141-142.
- Dorigo, W.A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T., Jackson, T. (2011), "The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements", Hydrology and Earth System Sciences 15 (5), pp. 1675-1698.
- Dorigo, W.A., Xaver, A. Vreugdenhil, M. Gruber, A., Hegyiová, A. Sanchis-Dufau, A.D., Zamojski, D., Cordes, C., Wagner, W., and Drusch, M. (2013). Global Automated Quality Control of In situ Soil Moisture data from the International Soil Moisture Network. Vadose Zone Journal, vol. 12, doi:10.2136/vzj2012.0097
- Gruber, A., Dorigo, W.A., Zwieback, S., Xaver, A. Wagner, W. (2013). Characterizing coarse-scale representativeness of in-situ soil moisture measurements from the International Soil Moisture Network. Vadose Zone Journal, vol. 12, doi:10.2136/vzj2012.0170

USDA ARS Watershed Validation Sites

- Continuing record for the *four* USDA ARS sites
 distributed across
 the U.S. in
 different climate
 regions providing
 surface soil
 moisture. (2002present)
- Focused on a large N and radiometer product scales.
- New sites available that are undergoing quality control (Fort Cobb, OK and St. Joseph, IN, and South Fork, IA).

USDA ARS Watershed References

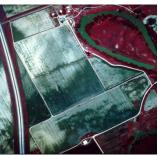
- Jackson, T. J., Cosh, M. H., Bindlish, R., Starks, P. J., Bosch, D. D., Seyfried, M. S., Goodrich, D. C., and Moran, M. S. Validation of Advanced Microwave Scanning Radiometer soil moisture products. IEEE Transactions on Geoscience and Remote Sensing, 48: 4256-4272. 2010.
- Jackson, T. J., Bindlish, R., Cosh, M. H., Zhao, T., Starks, P. J., Bosch, D. D., Moran, M. S., Seyfried, M. S., Kerr, Y., Leroux, D. SMOS validation of soil moisture and ocean salinity (SMOS) soil moisture over watershed networks in the U.S. IEEE Transactions on Geoscience and Remote Sensing, 50: 1530-1543, 2012.

Outline (Part 2)

- Validation methods used for each product
 - Five methodologies (SMAP Examples)
- Most important (in situ) reference data set
 - International Soil Moisture Network
 - USDA ARS Watersheds
 - JAXA Sites
- Dealing with validation issues (SMAP examples)
 - Spatial scale (in situ data representativeness at pixel scale, different spatial product resolutions, etc.),
 - Global representation of sites
 - Instrumentation and installations of in situ sites
 - Metrics used

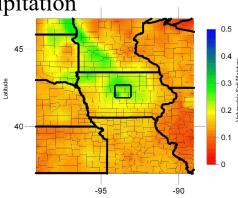
Challenges in Soil Moisture Validation

- Multiple scale variability of soil moisture
- Sensor footprint size (up to 40 km)
- Increasing the number and quality of in situ sites
- Different ground-based sensors and standards
- Different satellite sensors


Soil Moisture Variability

- Soil moisture exhibits multiple scale sources of variability.
- Extensive domains (large footprints) involve more sources.
- Most networks are sparse relative to the scales of variability. ullet

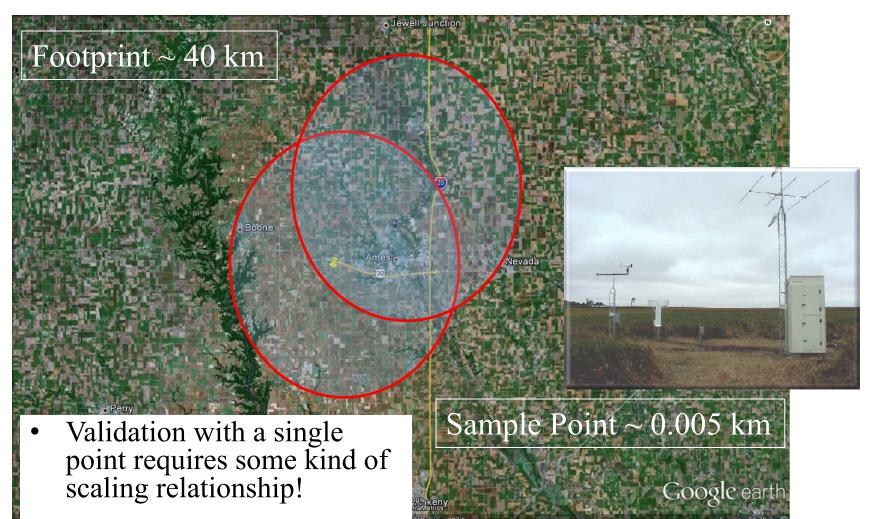
Tillage



Profile

Longitude

Within Field


Precipitation

Challenges in Soil Moisture Validation

- Multiple scale variability of soil moisture
- Sensor footprint size (up to 40 km)
- Increasing the number and quality of in situ sites
- Different ground-based sensors and standards
- Different satellite sensors

Sensor Footprint Size

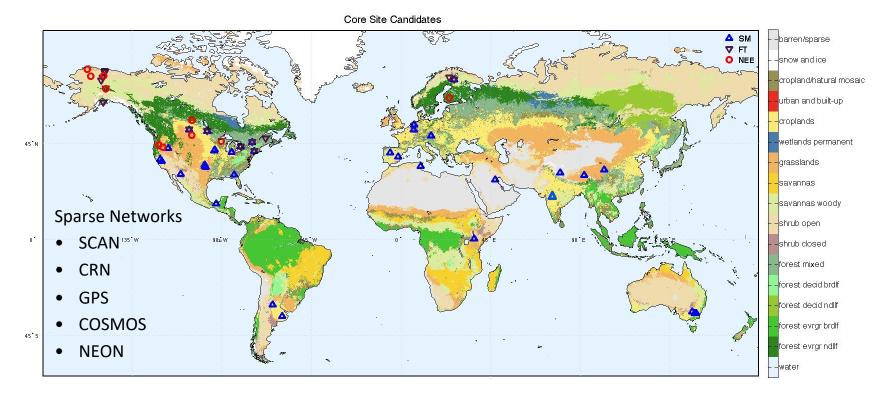
• This is an inherent problem of passive methods and real aperture antennas.

SMAP Up-scaling Initiative

- *Issues:* There are many sparse network resources available. How can we reliably relate these to satellite products? How effective are existing upscaling techniques?
- *Objectives:* Establish protocols and standards for establishing point to footprint scaling functions.
- *Approach:* White paper.
 - "Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products", W. Crow, A. Berg, M. Cosh, A. Loew, B. Mohanty, R. Panciera, P. de Rosnay, D. Ryu, and J. Walker, *Reviews of Geophysics*, 50, RG2002, doi:10.1029/2011RG000372, 2012.

Challenges in Soil Moisture Validation

- Multiple scale variability of soil moisture
- Sensor footprint size (up to 40 km)
- Increasing the number and quality of in situ sites
- Different ground-based sensors and standards
- Different satellite sensors


SMAP Cal/Val Partners Program

- In situ observations are essential to SMAP Cal/Val
- There were only a few high quality resources available
- Increasing the number was constrained by
 - The time and effort required to establish a site
 - No \$ to support these
- Action: Cal/Val Partners Program
 - No cost collaboration
 - Minimum standards
 - In situ data in exchange for early access to SMAP products

SMAP Cal/Val Partners Program: Sites

- **Core Validation Sites**: In situ observing sites that provide wellcharacterized estimates of a L2-L4 product at a matching spatial scale, a direct benchmark reference for the products. Additional minimum criteria are:
 - Provides calibration of the in situ sensors
 - Up-scaling strategy provided by Partner
 - Provides data in a timely manner
 - Long term commitment by the sponsor/host
- **Supplemental Validation Sites**: In situ observing sites that provide estimates of a L2-L4 product but do not meet all of the minimum criteria for a Core Validation Site. (i.e. sparse networks)
 - Supplemental resource in assessing whether mission requirements have been met but can play an important role in Stage 2 Validation.
 - The baseline approach to using sparse networks is the triple-collocation technique. Efforts to improve this approach are desirable.

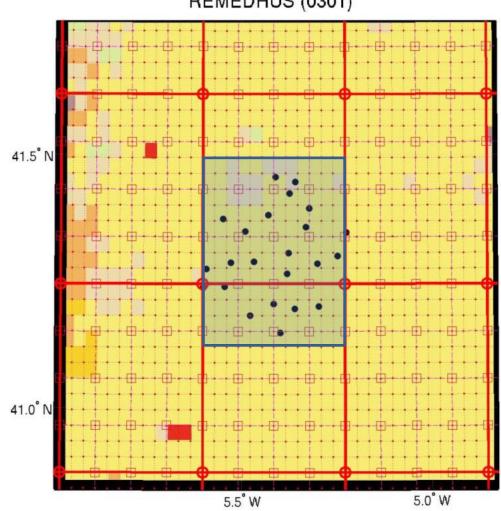
SMAP Cal/Val Partners Program: Core Validation Site Candidates

- The current set of Partners covers a wide range of vegetation and climate conditions.
- Ongoing qc evaluations and validation rehearsals are ongoing to down select.

SMAP Science Products: 3 Spatial Resolutions

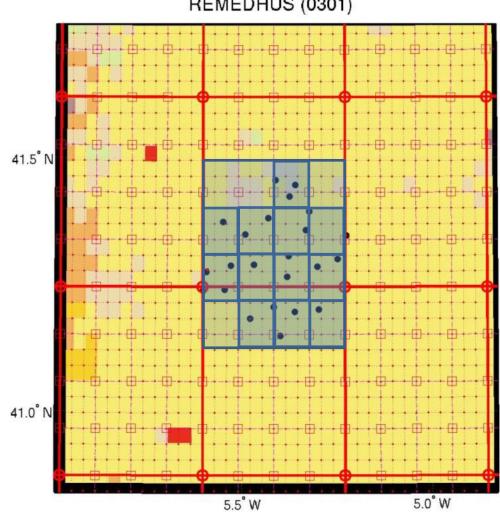
Product	Description	Gridding (Resolution)	Latency**			
L1A_Radiometer	Radiometer Data in Time-Order	-	12 hrs			
L1A_Radar	Radar Data in Time-Order	-	12 hrs			
L1B_TB	Radiometer T_B in Time-Order	(36x47 km)	12 hrs	Instrument Data		
L1B_S0_LoRes	Low Resolution Radar σ_o in Time-Order	(5x30 km)	12 hrs	Instrument Data		
L1C_S0_HiRes	High Resolution Radar σ_o in Half-Orbits	1 km (1-3 km)	12 hrs			
L1C_TB	Radiometer <i>T_B</i> in Half-Orbits	36 km	12 hrs			
L2_SM_A	Soil Moisture (Radar)	3 km	24 hrs			
L2_SM_P	Soil Moisture (Radiometer)	36 km	24 hrs	Science Data (Half-Orbit)		
L2_SM_AP	Soil Moisture (Radar + Radiometer)	bil Moisture (Radar + Radiometer) 9 km 24 hrs				
L3_FT_A	Freeze/Thaw State (Radar)	3 km	50 hrs			
L3_SM_A	Soil Moisture (Radar)	3 km	50 hrs	Science Data		
L3_SM_P	Soil Moisture (Radiometer)	36 km	50 hrs	(Daily Composite)		
L3_SM_AP	Soil Moisture (Radar + Radiometer)	9 km	50 hrs			
L4_SM	Soil Moisture (Surface and Root Zone)	9 km	7 days	Science Value-Added		
L4_C	Carbon Net Ecosystem Exchange (NEE)	9 km	14 days			

* Over outer 70% of swath.


** The SMAP project will make a best effort to reduce the data latencies beyond those shown in this table.

Core Validation Sites and Scaling (1/3)

- We have a good set of sites to support the validation of the 36 km product (in part due to prior missions with 25-50 km resolutions) using standard statistical methods (N large).
- This is the actual SMAP grid for the 3, 9, and 36 km products over a site in Spain.
- In most cases, the distribution of the points at a site does not match the grid products to make N as large as possible.


Core Validation Sites and Scaling (2/3)

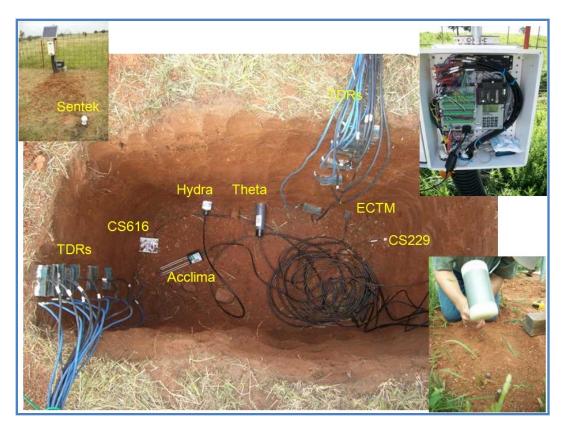
REMEDHUS (0301)

- Rather than have poorly distributed and small (N) data sets, we decided to shift the grid ... just for validation.
- In most cases, the average ٠ of these points will provide a statistically significant estimate of the surface soil moisture.
- Not all sites will look this • good!

Core Validation Sites and Scaling (3/3)

REMEDHUS (0301)

- New challenge: higher resolution products.
- There are fewer sites with enough points to support a standard statistical analyses.
- Some options
 - Ignore: 1 or 2 points in a grid cell is just fine!
 - More effort into upscaling methodologies.

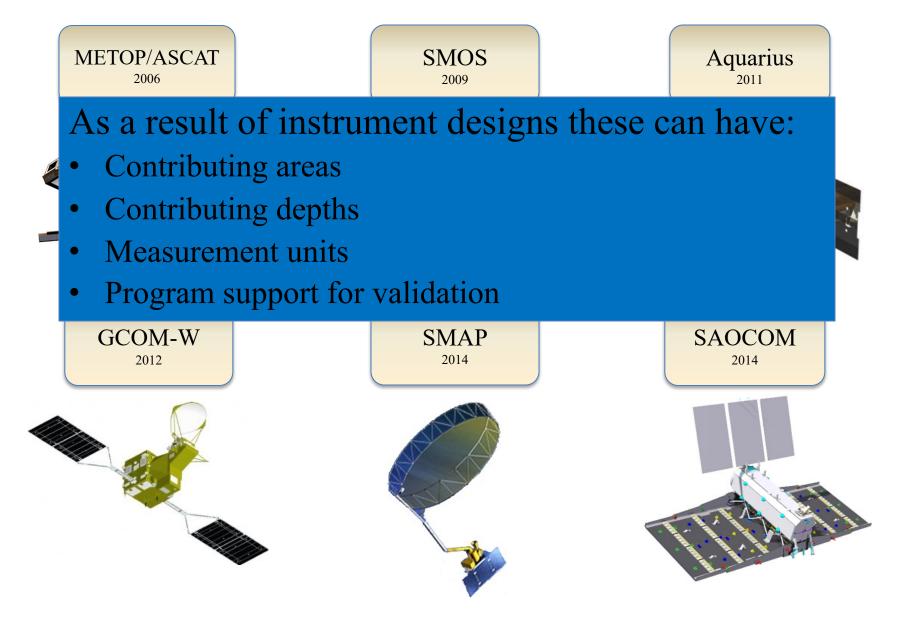

• Our confidence in using any specific site for assessments will depend on the quality of the calibration, representation, and up-scaling.

Challenges in Soil Moisture Validation

- Multiple scale variability of soil moisture
- Sensor footprint size (up to 40 km)
- Increasing the number and quality of in situ sites
- Different ground-based sensors and standards
- Different satellite sensors

Different Ground-based Sensors and Standards

- Sensors/Networks have different measurement units, depths, contributing area/volume, calibration, and latency.
- In order to conduct an efficient validation program we need observations that are calibrated and referenced to the same standard.



SMAP In Situ Soil MoistureTestbed Initiated in 2010 in Oklahoma

Challenges in Soil Moisture Validation

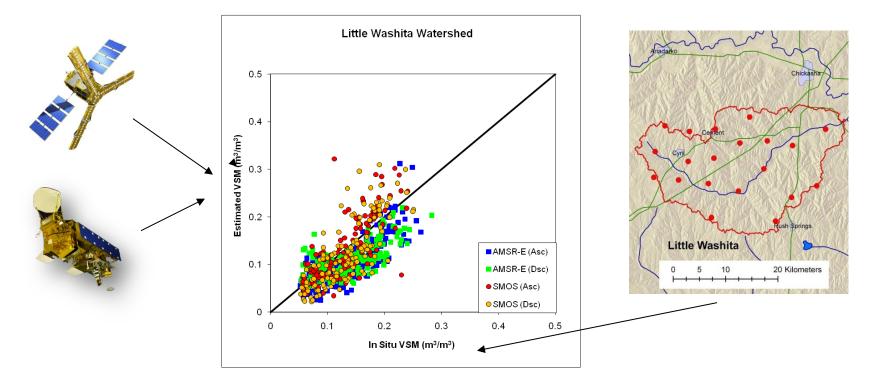
- Multiple scale variability of soil moisture
- Sensor footprint size (up to 40 km)
- Increasing the number and quality of in situ sites
- Different ground-based sensors and standards
- Different satellite sensors

Satellites Providing a Soil Moisture Product

Soil Moisture Validation Metrics

- Typical Metrics
 - RMSE, Bias, R, ubRMSE,
- Best Practice
 - Report them all.
 - Projects have performance targets that must be addressed.
- References
 - Entekhabi, D., R. Reichle, R. Koster and W. Crow, 2010. Performance metrics for soil moisture retrievals and application requirements, Journal of Hydrometeorology, 11(3), 832-840.
 - Albergel, C., L. Brocca, W. Wagner, P. de Rosnay, and J. Calvet, 2013. Selection of Performance Metrics for Global Soil Moisture Products: The Case of ASCAT Soil Moisture, pp. 431-447. in Remote Sensing of Energy Fluxes and Soil Moisture Content, Editor G. P. Petropoulos, CRC Press.

SMAP Level 1 Science Requirements


- The NSF Decadal Survey identified numerous potential applications for SM/FT observations.
- These were grouped into three categories with a spatial resolution, refresh rate, and accuracy.

Requirement	Undro	Hydro- Climatology	Carbon	Baseline Mission		Threshold Mission	
	Hydro- Meteorology		Carbon Cycle	Soil Moisture	Freeze/ Thaw	Soil Moisture	Freeze/ Thaw
Resolution	4–15 km	50–100 km	1–10 km	10 km	3 km	10 km	10 km
Refresh Rate	2–3 days	3–4 days	2–3 days ^(a)	3 days	2 days	3 days	3 days
Accuracy	0.04-0.06 ^(c)	0.04-0.06 ^(c)	80-70% ^(b)	0.04 ^(c)	80% ^(b)	0.06 (c)	70% ^(b)
Mission Duration				36 months		18 months	

^(a) North of 45N latitude, ^(b) Percent classification accuracy (binary freeze/thaw), ^(c) Volumetric water content, $1-\sigma$ in [cm³/cm³] units

- These are the L1 priority products and requirements. The define what the proposed mission must accomplish.
- Cal/Val must provide information to assess mission performance.

Core Validation Site Example (Little Washita, SMOS, and AMSR-E)

Product	SMOS Asc. 0600 AMSR-E Dsc 0130			SMOS Dsc. 1800 AMSR-E Asc. 1330				
	RMSE	Bias	R	Ν	RMSE	Bias	R	N
SMOS	0.042	0.002	0.773	130	0.044	-0.008	0.775	134
AMSR-E	0.046	-0.029	0.709	214	0.048	-0.035	0.790	244