Assessment of Coarse and Medium Resolution Land Surface Phenology Products Using Multiple Sources of Independent Data

Douglas Bolton¹, Mark Friedl¹, Eli Melaas¹, Joshua Gray², Minkyu Moon¹

¹Earth & Environment, Boston University

LCLUC

²Center for Geospatial Analytics, North Carolina State University

Land Surface Phenology Products

- Collection 6 MODIS Land Cover Dynamics (MCD12Q2) Product
 - 500 m spatial resolution
 - 2001 Present
- Landsat Phenology Algorithm
 - Entire Landsat Archive
 - 30 m spatial resolution
 - 1984 Present
- Multisource Land Surface Phenology (MS-LSP)
 - Harmonized Landsat Sentinel (HLS) data
 - 3-5 day revisit
 - 30 m spatial resolution
 - 2015 Present

image credit: Bill Hargrove (ForWarn)

BOSTON

UNIVERSITY

NC STATE

Collection 6 MODIS Land Cover Dynamics

NC STATE

UNIVERSITY

BOSTON

Collection 6 MODIS Land Cover Dynamics

Collection 6 MODIS Land Cover Dynamics

Talk on Friday at 2:40 PM:

Josh M Gray et al. - B53C-05: USA-NPN Observations Reveal the Ecological Relevance of Remotely Sensed Phenology Walter E Washington Convention Center - 147B

- Moving to finer spatial resolution
 - 500m to 30 m
- Until recently, temporal frequency too low to fit curves annually at Landsat resolution
- Instead, looks for deviations from average phenology

- Assessing start of season and end of season from Landsat
 - 14 Sites, Mix of data sources
 - Flux towers
 - Phenocams
 - Long Term Ecological Research (LTER) sites

UNIVERSITY

Compare against flux data:

NC STATE

UNIVERSITY

BOSTON

Compare against phenocams:

GCC = G / (R+G+B)

RCC = R / (R+G+B)

9

BOSTON

Compare against ground data:

Surveys of budburst, leaf coloring, and leaf fall

NC STATE

UNIVERSITY

BOSTON

Harmonized Landsat Sentinel-2 (HLS)

Sentinel-2A, 2B

- 10, 20 m spatial res.
- 10-day revisit
- Oct. 2015
 - present

<u>HLS</u>

- 30 m spatial res.
- 3- to 5-day revisit
- Oct 2015 present
- BRDF Normalized
- Cloud/Shadow Mask

Landsat 8

- 30 m spatial res.
- 16-day revisit
- May 2013 present

Douglas Bolton - Vegetation Index Focus Area Workshop - December 12, 2018

Distributed via LP-DAAC

cience Data Set	SDS Description
Phenological Timing Metrics	
Onset Greenness Increase (OGI)	Date, number of days from Reference Date
50 Percent Greenness Increase (50PCGI)	Date, number of days from Reference Date
Onset Greenness Maximum (OGMx)	Date, number of days from Reference Date
Onset Greenness Decrease (OGD)	Date, number of days from Reference Date
50 Percent Greenness Decrease (50PCGD)	Date, number of days from Reference Date
Onset Greenness Minimum (OGMn)	Date, number of days from Reference Date
Integrated Greenness	Sum of daily EVI during growing season
HLS Reflectance Metrics	
HLS Reflectance on OGI Date	Bands 1-6 HLS surface reflectance on OGI date
HLS Reflectance on 50PCGI Date	Bands 1-6 HLS surface reflectance on 50PCGI date
HLS Reflectance on OGMx Date	Bands 1-6 HLS surface reflectance on OGMx date
HLS Reflectance on OGD Date	Bands 1-6 HLS surface reflectance on OGD date
HLS Reflectance on 50PCGD Date	Bands 1-6 HLS surface reflectance on 50PCGD date
HLS Reflectance on OGMn Date	Bands 1-6 HLS surface reflectance on OGMn date
LSP Mean and Anomaly Metrics	
Long Term Weekly Mean EVI	Average EVI across available years, at 7-day time steps; Available in 2019.
Weekly EVI Anomaly	In-season anomaly in EVI, relative to long-term mean, at 7- day time steps; Available in 2019.
Cumulative EVI Growing Season Anomaly	Sum of anomalies in daily interpolated EVI versus long-term mean at each pixel; Available in 2019.

NC STATE

UNIVERSITY

BOSTON

Topographic correction of imagery

Topographic correction of imagery

Illumination vs Band 4 reflectance

Tan et al. 2013 – Rotational Correction

Jan 25, 2017 image

Topographic correction of imagery

Topographic correction of imagery

Illumination vs Band 4 reflectance

Tan et al. 2013 – Rotational Correction

Jan 25, 2017 image

Topographic correction of imagery

North facing deciduous forest pixel

More realistic EVI amplitude after correction

One week shift in 50% amplitude dates

Difficult to validate!

We don't have a sample of phenoCams on north and south facing slopes

Date of 50% EVI2 increase

Bakersfield, CA

Date of 50% EVI2 increase

Bakersfield, CA

Day of year – 50% greenup 40 80 120 >160

BOSTON

UNIVERSITY

NC STATE 18 UNIVERSITY

NC STATE

UNIVERSITY

BOSTON

What does 50% decrease in HLS time-series correspond to?

8 sites at Hubbard Brook across 3 years (2015-2017)

Highest correlation is with 50% leaf drop

But lowest RMSE is with noticeable leaf color

Conclusions

Multiple sources of validation:

- Flux towers
- Phenocams
- Ground Observations
- Citizen Science datasets (NPN)

Consistently better results in spring than fall

- Defined event in spring (Budburst)
- Fall is a gradual process of leaf coloring and leaf fall
 - What is it that we are measuring?

Thanks!

Email: <u>dbolt@bu.edu</u> Group website: <u>www.bu.edu/lcsc/</u>

Douglas Bolton - Vegetation Index Focus Area Workshop - December 12, 2018

22