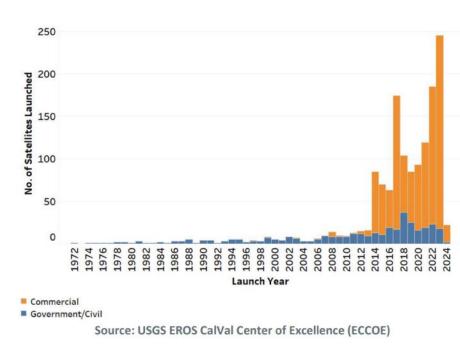
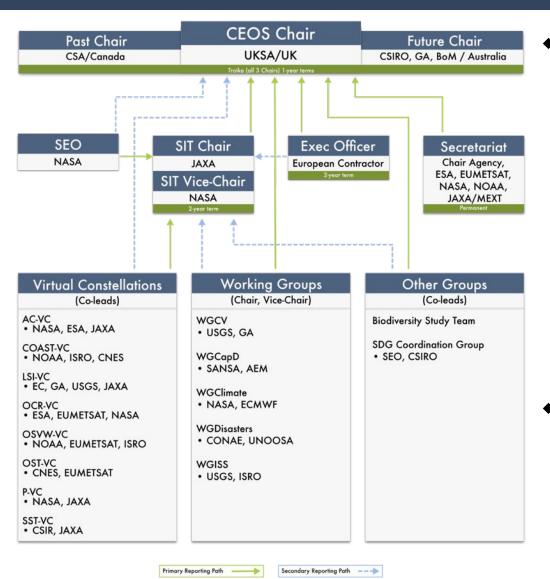


Fabrizio Niro (Serco/ESA),


Jaime Nickeson (GSFC/NASA)

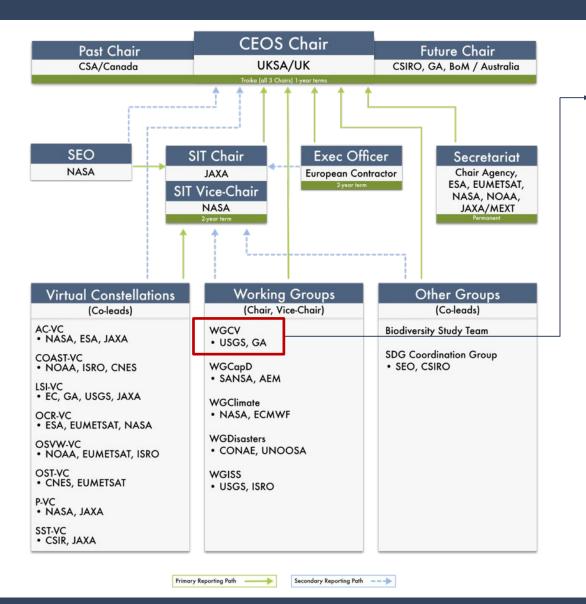
LPS25, Vienna, 26th June 2025

Context and Motivations


- The EO domain is undergoing dramatic changes with the proliferation of satellite missions, both from Institutional and Commercial entities, providing ever improving spatial, temporal and spectral coverage and resolution
- How to realise the full **potential** of such a wealth of EO data?
- Interoperability and consistency across missions is crucial to enhance comparability and enable synergistic use of heterogeneous EO data

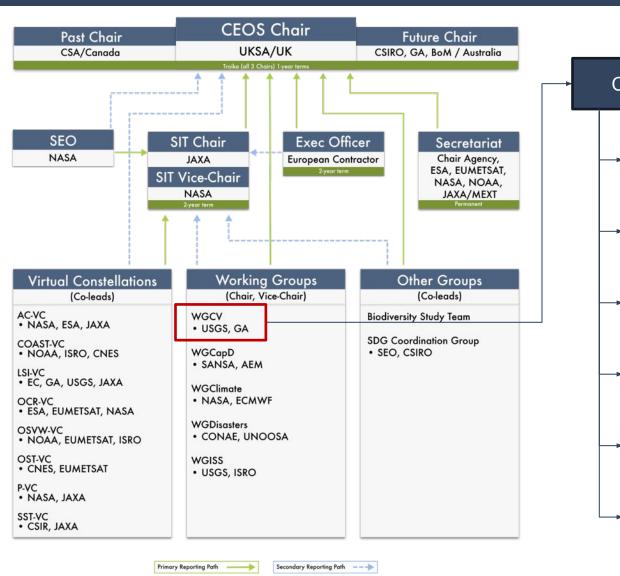
Commercial and government/civil satellites launched since 1972.

CEOS



- organisations (60+ Agencies, ~200 satellites) is ensuring international **coordination** of several initiatives aiming at **improving quality**, **interoperability** and **consistency** of satellite EO systems and data products
- The overarching goal is to optimise the benefits of space-based Earth observation and inform decision making

CEOS-WGCV

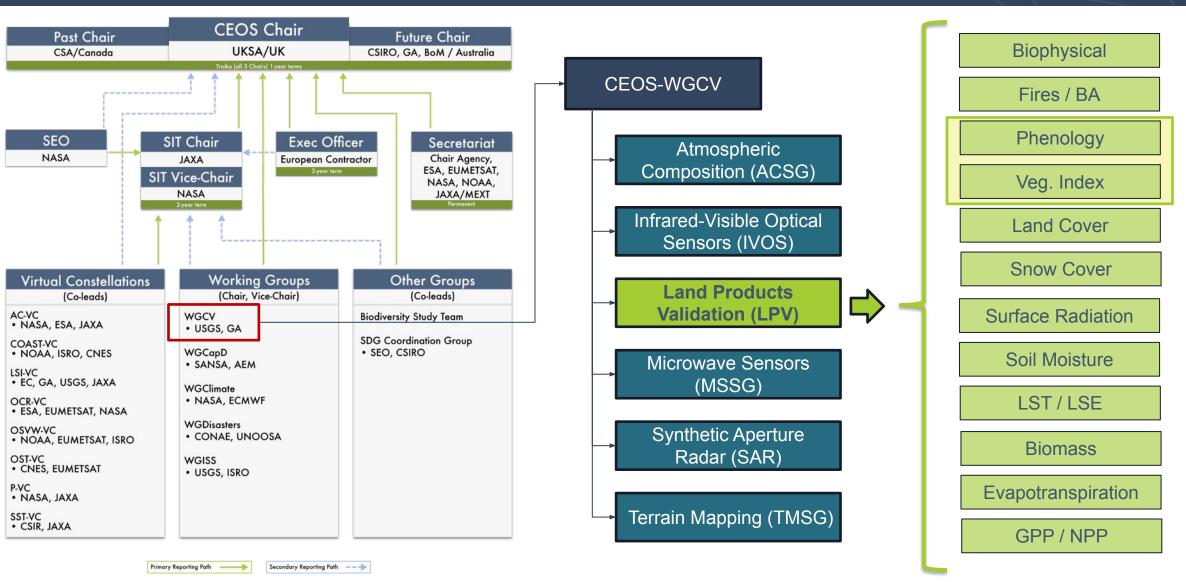

CEOS-WGCV

CEOS-WGCV has the primary focus on **data quality** and **Cal/Val**, with the following objectives:

- To ensure long-term confidence in the accuracy and quality of satellite-based EO data
- To provide a forum for the exchange of information about Ca/Val

LPV sub-group

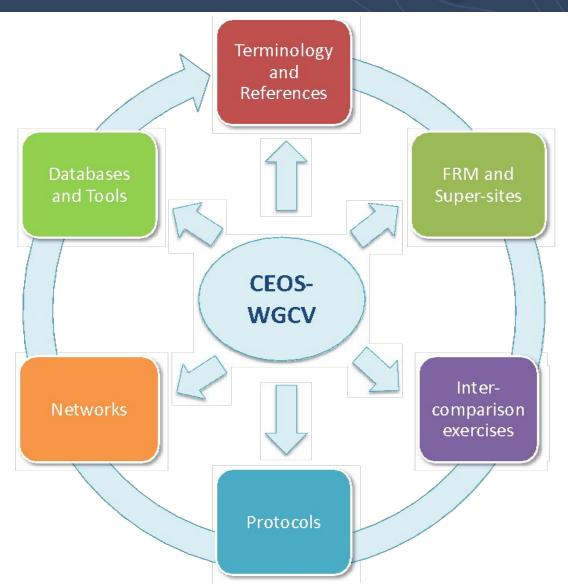
CEOS-WGCV Atmospheric Composition (ACSG) Infrared-Visible Optical Sensors (IVOS) ** **Land Product** Validation (LPV) Microwave Sensors (MSSG) Synthetic Aperture Radar (SAR) Terrain Mapping (TMSG)


A DO WGCL

LPV sub-group focuses on terrestrial ECV/EBVs, and its **objectives** are :

- To foster and coordinate quantitative validation of satellite-derived global land products
- To increase quality and promote harmonisation of validation practices

LPV internal structure



CEOS-WGCV coordination

- WGCV supports several initiatives aimed at **facilitating combined** use of EO data by providing:
 - Terminology and References
 - FRM and supersites
 - Inter-comparison exercises
 - Protocols
 - Networks
 - Databases and tools
- LPV subgroup is actively involved in most of these initiatives

Terminology and References

- Common Vocabulary
 - Dedicated WG on establishing agreed
 terminology

 Review paper
- Surface Reflectance (SR) Quality and Consistency
 - Dedicated group (including LPV members) aiming at enhanced consistency of SR products
 - Building on CEOS-ARD effort
 - Define the **measurand** and methods to enhance consistency: e.g., BRDF and topography correction, solar angle normalization

Fiducial Reference Measurements

- ❖ A recent WGCV document and MDPI RS paper (Goryl et al. 2023) provides definition and process for endorsing specific measurements as FRMs
- Assess maturity and compliance of a Cal/Val measurement based on a set of community-agreed CEOS-FRM quality criteria.
- Self-assessment process by data provider based on Maturity Matrix, overall grading will be verified and endorsed at WGCV level
- WGCV members are conducting pilot projects: RadCalNet, ICOS, Pandora, Hypernets

measurements (FRMs): What are they?", MDPI RS

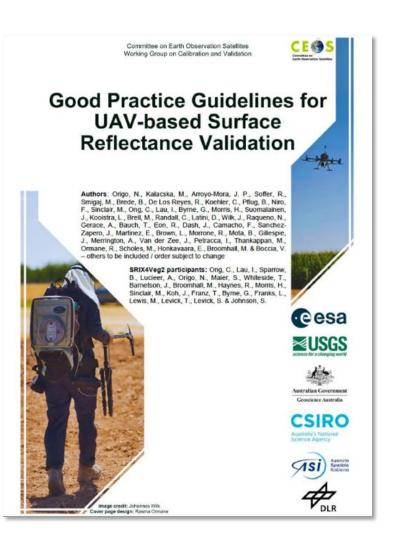
Goryl et al, 2023, "Fiducial reference

Self-Assessment			Independent Assessor		
Nature of FRM	FRM Instrumentation	Operations/ Sampling	Data	Metrology	Verification
Descriptor	Instrument documentation	Automation level	Data completeness	Uncertainty characterisation	Guidelines adherence
Location/availability of FRM	Evidence of traceable calibration	Measurand sam- pling/representativeness	Availability and usability	Traceability Documentation	Utilization/ feedback
Range of instruments	Maintenance plan	ATBDs on processing: algorithms/software	Data Format	Comparison/calibration of FRM	Metrology verification
Complementary observations	Operator expertise	Guidelines on transformation to satellite pixel	Ancillary Data	Adequacy for intended class of instrument/measurand	Independent verification
		FRM CLASSIFICATION			ABCD (to b

Supersites

With the purpose of enhancing quality of Cal/Val reference data, **LPV** elaborated the concept of a **supersite**:

- Super characterized sites following well-established protocols useful for the validation of satellite land products (at least 3) and for Radiative Transfer Model (RTM) approaches
- Active, long-term operations, supported by appropriate funding
- Ideally supported by airborne LiDAR and hyperspectral acquisitions
 - ☐ Update on-going, see F. Camacho talk

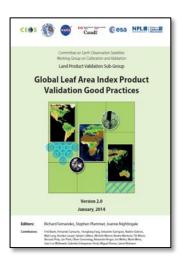


Inter-comparison exercises

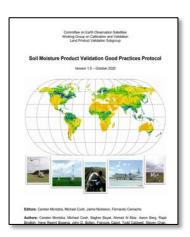
Goal: Work towards enhanced harmonisation across algorithms and Cal/Val practices

	Description	Outcomes
ACIX	ACIX Atmospheric Correction scheme intercomparison	ACIX-I: Doxani et al. MDPI-RS, 2018
		ACIX-Aqua: Pahlevan et al. RSE 2021
		ACIX-II: Doxani et al. RSE 2023
		ACIX-III: to be submitted in 2025
CMIX	Cloud Masking scheme intercomparison	CMIX-I: Skakun et al. RSE 2022
		CMIX-II: draft being prepared
DEMIX	DEM intercomparison	Strobl et. al. ISPRS 2021
SRIX4Veg	Intercomparison of Surface reflectance for vegetation	Origo et. al. 2025, CEOS-WGCV protocol, joint IVOS - LPV effort

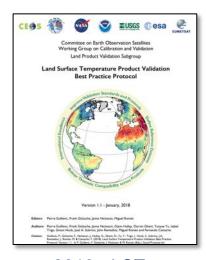
Protocols



- Most visible and impactful outcome of LPV highly recognised at CEOS level!
- LC protocol being finalised, to be endorsed at WGCV and CEOS level!
- LAI/fAPAR protocol being revised, have started effort with a review paper


First draft of VI protocol being finalised

Summary - Annual Downloads					
Year	AGB	SM	Albedo	LST	LAI*
2016					53
2017				17	58
2018				104	142
2019			126	79	95
2020		102	122	106	134
2021	445	126	90	81	129
2022	188	55	48	52	93
2023	239	77	60	79	104
2024	328	69	58	105	136
2025^	92	49	13	21	24
Totals	1292	478	517	644	968
_					


*LAI missing stats from Aug2014 - Jun2016, Athru May

2014 - LAI

2020 - SM

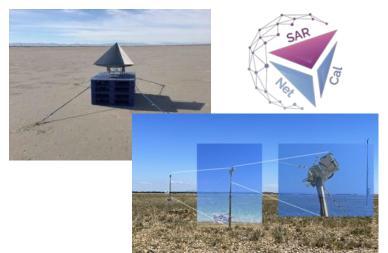
2018 - LST

2021 - AGB

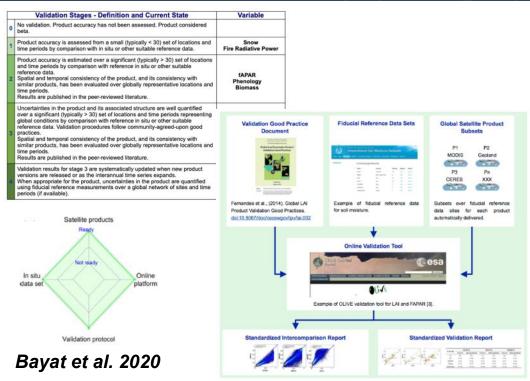
2019 - Albedo

Networks

Calibration Networks	Description	Current Status
RadCalNet	Provides SI-traceable TOA reflectances for post-launch radiometric cal/val of optical sensors. Led by WGCV-IVOS	Fully operational, including 5 sites, currently considering expansion with additional sites https://www.radcalnet.org/
SARCalNet	Network of selected curated sites for SAR cal/val. Led by WGCV-SAR	Fully operational website and database publicly available: https://www.sarcalnet.org/
TIRCalNet	Dedicated to TIR optical sensors cal/val, mainly for TOA BT radiometric validation. Led by WGCV-IVOS and LPV	Coordinated by ESA and CNES in collaboration with NASA/JPL. Instrument specifications and algorithms being defined.

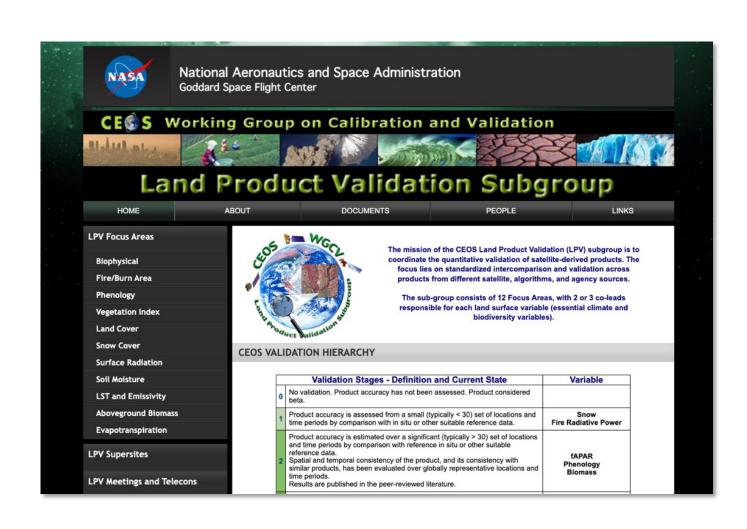


Today 5 sites (+ 4 more in preparation)



Database and Tools

- LPV developed a validation maturity concept and a framework to ensure common approaches to the validation of terrestrial ECVs
- LPV framework basic elements:
 - Fiducial Reference Data
 - Validation Good Practices
 - Satellite products
 - Online validation tools
- Availability of an online validation tool (i.e., operational validation) is prerequisite to reach Stage "4"



LPV communications

- Annual Newsletters (email)
- Quarterly telecons (Web)
- Yearly tag up meetings with each FA (VI/Phenology and ET already done)
- Up-to-date Web / list of products / key references
- Workshops or special sessions per variable (every 2-3 years)
- Plenary LPV meeting (every 1 or 2 years)

Meeting Objectives

- The main objective is to review status of LPV activities and elaborate an LPV action plan for the 2025-28 period.
- Specific objectives are:
 - Hear activity reports from CEOS LPV focus areas,
 - Discuss the status of good practices validation protocols,
 - Report on current validation and intercomparison activities,
 - Hear updates on fiducial reference data collection
 - Assess readiness towards upcoming satellite missions
 - Exchange information and promote synergies across focus areas

Agenda

- ❖ 15 min / slot including Q&A for each FA
- 15 min final slot for discussion and wrap up

	Thursday 26 th J	une 2025	
14:00	Start meeting		
	Introduction		
14:00 – 14:15	CEOS-LPV status and plans, updates on ESA Ca/Val projects	Fabrizio Niro (Serco/ESA), Jaime Nickeson (GSFC/NASA)	
14:15 – 14:30	LPV Supersites update	Fernando Camacho (EOLab) – In person	
	FA updates		
14:30 – 14:45	Land Cover	Sasha Tyukavina (UMD), Nandika Tsendbazar (WUR) – In person	
14:45 – 15:00	Biophysical	Luke Brown (Salford University), Richard Fernandes (NRC) – In person	
15:00 – 15:15	Fire	Bernardo Mota (NPL) – In person	
15:15 – 15:30	Soil Moisture	Alexander Gruber (TUW) – In person	
15:30 – 16:00	Coffee break		
16:00 – 16:15	Snow Cover	Juha Lemmetyinnen (FMI), Carrie Vuyovich (NASA) – Slides presented by FN	
16:15 – 16:30	Above Ground Biomass	Kim Calders (U. Ghent), Neha Hunka (ESA/ESRIN) – Slides presented by FN	
16:30 – 16:45	Land Surface Temperature	Lluis Perez Plannels (IMK) – In person	
16:45 – 17:00	GPP/NPP	Alvaro Moreno (UV) – In person	
17:00 – 17:15	Phenology	Victor Rodriguez Galiano (U. Seville) – In person	
17:15 – 17:30	Surface Radiation	Jorge Sanchez Zapero (EOLab), Angela Erb (Leidos), Zhuosen Wang (NASA) – Remote	
17:30 – 17:45	Evapotranspiration	Yun Yang (Cornell University) – Remote	
17:45 – 18:00	Vegetation Indices	Simon Kraatz (USDA), Tomoaki Miura (U. Hawaii) – Remote	
18:00 – 18:15	Wrap up and Closing remarks	F. Niro, J. Nickeson	
18:15	End of Meeting		

