Protocol

- Feedback received from small review committee
 - Finalizing implementing changes wrt comments
- 6 main chapters
 - Definition of Vegetation Indices
 - Requirements of Vegetation Indices
 - General considerations for satellite VI products
 - Recommended approach for global product validation
 - Recommended approach for global product intercomparison
 - Recommended content of a product validation document
- Poster presentation of draft protocol @LPVE

1. Definition of vegetation indices

- Vegetation indices are optical measures of vegetation canopy 'greenness', a direct measure of photosynthetic potential resulting from the composite property of total leaf chlorophyll, leaf area, canopy cover, and structure.
- They are also widely used as proxies in estimating canopy state variables (leaf area index, fraction of absorbed photosynthetically-active radiation, chlorophyll content, vegetation fraction) and canopy biophysical processes (photosynthesis, transpiration, net primary production).
- Definition of the most used VIs are given (NDVI, EVI)

2. Requirements of VI

- General requirements for VIs were formulated at the CEOS LPV VI workshop (2016):
 - The uncertainty estimate of VIs should be expressed in the VI units.
 - Evaluation of VIs should include characterization of VI value changes with respect to changes in actual vegetation conditions (biophysical and/or physiological).
 - The long-term stability of VI time series datasets is a prime goal.
- Example requirements from operational services are listed.
- Further requirements of the VIs can differ from their application. Therefore, it is advised to formulate a priori a set of key requirements for the specific application, translate these into research questions and organize the validation along these questions.

3. General considerations for satellite VI products

In this chapter we treat the following aspects related to validation and product inter-comparison:

- VI product algorithm and compositing method
- Temporal and spatial resolution
- Spectral considerations
- Uncertainties related to VI products
 - Sensor calibration
 - Atmospheric correction
 - Pixel quality assurance
 - Compositing
 - Scaling uncertainty

4. Recommended approach for Global Product Validation

- This chapter describes the recommended approach for the VI product validation with independent in-situ data.
 - The time series validation approach was agreed as a standard VI validation methodology. Here, validation focuses on validating the quality of VI time series data as how well VI products capture seasonal evolution of vegetation.
- Datasets used for the validation of VI products can be divided into two categories: network-based and opportunistic *in situ* data:
 - In situ observation networks
 - AERONET-based Surface Reflectance Dataset
 - FLUXNET
 - Phenological Eyes Network (PEN) Field Spectrometer Time Series Data
 - Fiducial reference measurement for vegetation (FRM4VEG)
 - HYPERNETS (from 2022)
 - RadCalNet
 - Time-lapse camera networks (e.g. PhenoCam, PEN, and others)
 - US-NPN Observational crowdsourced data
 - Opportunistic in situ data (as methods)
 - NEON Airborne Observation Platform Hyperspectral Data
 - Opportunistic unmanned aerial vehicle (UAV) data at Long-Term Agroecosystem Research (LTAR) Network Data
 - Ground and drone observational reflectance data
 - The chapter ends with a discussion of the capacity and limitations for global VI product validation.

•

5. Recommended approach for Global Product Intercomparison

- This chapter treats all aspects of intercomparing a global VI data set with other existing VI datasets.
- It discusses

•

•

- The recommended inter-comparison methods
- The sampling strategy at the spatial, temporal and angular level
- How to deal with spectral differences
- The inter-comparison approach
- The intercomparison metrics
- Focus of product inter-comparison is to characterize the differences and their spatial and temporal distribution.
 - ✓ Overall similarity, magnitude of differences and their spatial and temporal patterns
 - Suggested measures
 - Product completeness
 - ✓ Spatial consistency
 - ✓ Statistical consistency
 - ✓ Temporal consistency
 - ✓ Statistical metrics discussed included:
 - RMSD (split into its systematic and unsystematic components)
 - Mean Bias Error, Mean Absolute Error
 - Precision or repeatability
- A discussion on the capacity and limitations for global product intercomparison is also given.

6. Recommended content of a Product Validation Document

- CEOS recommends that the validation document of a VI product include:
 - 1) Product QA information
 - 2) Uncertainty information obtained via validation (NIST-traceability)
 - 3) Product inter-comparison results

New data sets

UP ON CALIBRATION & VAL

- Proba-V C2 NDVI released. Validation report

- Main differences:
 - Improved pixel classification (cloud, snow/ice, cloud shadow)
 - Improved A/C
 - Update of absolute radiometric calibration
- Main results

