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advancement. We welcome all interested experts to participate in improving this document and 
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SUMMARY  
The Global Climate Observing System (GCOS) included soil moisture in the list of Essential 

Climate Variables (ECVs) to express its important role in Earthôs water, energy and carbon cycle. 

Soil moisture has a major impact on agriculture, land surface hydrology, weather, and climate 

forecasting. This document is a community-based effort to provide recommendations on good 

practices for the validation of global to regional soil moisture products.  

Definitions are given and metrics to adequately describe the quality of soil moisture products are 

presented. Spaceborne active and passive microwave sensors are listed with their characteristics, 

and the typical soil moisture retrieval methods are explained, including dielectric mixing models 

and optical methods. Spatial scaling, root zone soil moisture estimation, and operational 

implementations are addressed, as these issues continue to gain more and more importance. 

Standard and advanced in situ measurement techniques are described as well as sensor 

calibration, spatial representativity, sampling strategies, and the benefit of airborne campaigns. 

The community has agreed upon the utilization of the International Soil Moisture Network (ISMN) 

as the main online repository for in situ soil moisture measurements. Different validation methods 

such as ground-based validation, satellite product intercomparison, and time series analyses are 

presented. We provide strategies to evaluate the long-term quality of soil moisture products, and 

give advice on how to handle typical temporal and spatial-scale mismatches and how to effectively 

report validation results. Moreover, the benefit of blind tests is discussed to gain objective 

validation results. 

We encourage data providers, scientists and practitioners to use this Soil Moisture Product 

Validation Good Practices Protocol to provide, analyze, and improve high quality Earth 

Observation results. 
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1 INTRODUCTION 

1.1 Importance  of soil moisture  
The role of soil moisture in the water, energy and carbon cycle of the Earth cannot be understated. 

Soil moisture has a major impact on agriculture, land surface hydrology, weather and climate 

forecasting. Soil moisture is responsible for the partitioning of solar energy into latent and sensible 

heat flux at the Earthôs surface, which is a key element of the energy cycle. Soil moisture also 

partitions precipitation into soil water, ground water, and surface runoff. Thus, land surface 

hydrology is critically concerned with monitoring and modeling surface soil moisture as it 

influences infiltration and therefore land surface runoff (Figure 1). Soil moisture is a primary 

concern for agriculture where it is a necessary element for growth and also the mechanism for 

movement of nutrients towards crops, impacting yield and productivity. Weather and climate 

forecasting can see great advances in skill with the incorporation of soil moisture state into models. 

 

Figure 1: Earth's water cycle. Credit: ESA 

Remote sensing of soil moisture is challenging, as the soil matrix masks the presence of water in 

many wavelengths. A few techniques have been developed, however, using thermal, microwave, 

visible/near-infrared frequencies as well as gravity anomalies to characterize and understand 

subsurface water status. This protocol will focus on the first three, as these tend to respond to the 

near surface soil moisture (soil surface to vadose zone) and not on groundwater status.  

The maturity of soil moisture as an observable from space has motivated the Global Climate 

Observing System (GCOS) to include soil moisture in the list of 50 Essential Climate Variables 

(ECVs) to support the work of the United Nations Framework Convention on Climate Change 

(UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) (Dorigo et al., 2015). 

1.2 The role of CEOS WGCV 
The Committee on Earth Observation Satellites (CEOS) has the goal of ensuring international 

coordination of civil space-based Earth observation programs, promoting exchange of data to 

optimize societal benefit and to inform decision making for securing a prosperous and sustainable 
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future for humankind. The mission of the Working Group on Calibration and Validation (WGCV) is 

to ensure the accuracy and quality of Earth observation data and products and to provide a forum 

for the exchange of knowledge regarding calibration and validation science. For soil moisture, 

calibration refers to the quantitative assessment and definition of a system response to known 

inputs. This can include radiometric responses to land surface, ocean, and sky conditions. 

Validation is the independent assessment of the quality of the data product derived from the 

system outputs with regard to known values of soil moisture collected by following an established 

protocol and standard. The subgroup on Land Product Validation (LPV) focuses on a number of 

land surface parameters and each has the following three goals: 

1. Development of protocols for the validation of satellite-derived products and defining 

guidelines for reporting results, 

2. Coordination and implementation of global validation activities, and 

3. Provision of the interface between the community, CEOS, and other international 

structures. 

The Soil Moisture Subgroup has been a thriving community with international cooperation related 

to validation activities and collaboration between remote sensing scientists and validation 

scientists. As an outcome, Gruber et al. (2020) recently published an important milestone about 

good practices guidelines for the validation of global coarse-scale satellite soil moisture products, 

which is a basis for many sections in this document. Community activities have progressed to the 

stage where a documentation of good practices is now possible. This document is to serve as the 

protocol of good practices of the community for the validation of remotely sensed satellite-based 

soil moisture estimates.  

1.3 Soil moisture requirements  
Determination of soil moisture requirements for various remote sensing platforms is a result of a 

combination of science and application requirements and platform capabilities. As missions have 

evolved, resolution and accuracy have improved. Table 1 lists the product traits and accuracy 

requirements of global soil moisture products. 

Table 1: Examples of soil moisture product traits and requirements.  

Mission Time Frame Repeat 

Cycle 

Wavelength Product 

Resolutions 

(grid 

posting) 

Sensor 

Resolution  

Accuracy 

Requirement 

AMSR-E, 

AMSR2 

2002-2011 

2012-present 

2-3 days C, X 25 km ~40 km 

(-3dB 

footprint) 

0.05 m3/m3 

SMOS 2009-present 2-3 days L 15 km ~40 km 

(-3dB 

0.04 m3/m3 
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footprint) 

ASCAT 2007-present ~daily 

(since 

Metop-C) 

C 12.5 km ~25 km * 

SMAP 2015-present 2-3 days L 9 km/36 km ~40 km 

(-3dB 

footprint) 

0.04 m3/m3 

Aquarius 2011-2015 7 days L ~100 km ~100 km 

(-3dB 

footprint) 

* 

* indicates no official requirement for the soil moisture product. For ASCAT H-SAF defined an accuracy 

requirement in terms of the SNR: threshold 0 dB, target 3 dB and optimum 6 dB. 

Soil moisture product requirements strongly depend on the target application. The Global 

Observing System for Climate (GCOS) has established the measurement uncertainty for soil 

moisture as 0.04 m3/m3 and a long-term decadal stability criterion of 0.1 m3/m3/a (GCOS-200, 

2016). This determination was a result of a survey of the community and consideration of different 

requirements for decision-making and monitoring activities. Satellite missions use this requirement 

as a baseline, but also incorporate instrument capabilities and land surface parameters such as 

vegetation biomass to establish their own requirements. 

1.4 Rationale for requirements for climate applications  
There are a variety of ways to represent soil moisture, saturation, and matrix potential. The 

interchange between the different variables often depends on the local land surface 

characteristics. This makes large scale monitoring and interpretation difficult without consideration 

of a multitude of other parameters. Therefore, a singular baseline variable, volumetric soil 

moisture, has been established as the reference point. Long-term soil moisture quantification is 

required for monitoring and trend analysis related to hydrology and agriculture. Without an 

understanding of the climatic norms, it is difficult to put climate trends into perspective. High spatial 

resolution as well as high temporal resolution are necessary as these are the scales of soil 

moisture and precipitation activity within a heterogeneous landscape. 

1.5 Supporting standardization programs  
When Earth Observation (EO) products are to be used for societal benefit, they need to be 

associated with a quality metric. The fundamental principle of the Quality Assurance Framework 

for Earth Observation (QA4EO) - "that all EO data and derived products have associated with 

them a documented and fully traceable quality indicator (QI)" - addresses this core requirement 

and is universally applicable to all disciplines (Group on Earth Observation, 2010). QA4EO seeks 

to ensure this requirement is implemented in a harmonious and consistent manner throughout all 



19 

 

EO communities to the benefit of all stakeholders. The main principle is that data and derived 

products shall have associated with them a fully traceable indicator of their quality: 

¶ A quality indicator shall provide sufficient information to allow all users to readily evaluate 

the ñfitness for purposeò of the data or derived product, 

¶ And traceability means that a quality indicator shall be based on a documented and 

quantifiable assessment of evidence demonstrating the level of traceability to 

internationally agreed upon reference standards. 

Specific for soil moisture, the Quality Assurance for Soil Moisture (QA4SM, 

https://qa4sm.eodc.eu/) service has been established, which provides the user with an easy-to-

use interface for comparing satellite soil moisture data against land surface models and in situ 

data stored in the International Soil Moisture Network (ISMN). The overall aim is to bring together 

methodologies and protocols used for the validation and quality control of soil moisture data 

products and provide users with traceable validation results. This includes the soil moisture good 

practices document at hand as well as the publication by Gruber et al. (2020). 

1.6 Goal of this document  
The goal of this document is to identify and promote good practices for the validation of global 

(and regional) satellite soil moisture products. The document specifically addresses uncertainty 

assessment against reference data sets. The latter should be traceable to in situ measurements 

of known accuracy, and the assessments should be augmented with metrics of precision derived 

from ensembles of the products themselves. The development of validation protocols is also 

related to the GCOS Action Items T15-T18 to make available global soil moisture products and a 

reference data repository (GCOS-200, 2016). 

2 DEFINITIONS 

2.1 Definition of soil moisture  
Soil moisture (or soil water content) may be expressed on a gravimetric (— ) or volumetric (—) 

basis and represents the amount of water present in the soil at a given matric potential. The matric 

potential ( ) is synonymous with the combined capillary and adsorptive surface forces that hold 

water within the solid soil matrix and are uniquely related to soil moisture under hydrostatic 

conditions. The highly nonlinear relationship between soil moisture and   is termed soil water 

characteristic and exhibits a very distinctive shape for each individual soil.  

Gravimetric soil moisture —  [kg*kg-1], which can be directly determined by oven-drying a wet bulk 

soil sample at 105°C, is defined as the ratio of the mass of water within the soil sample to the 

mass of the oven-dry solid material. Volumetric soil moisture — [m3*m-3], defined as the volume 

of water within a given soil volume, may be expressed in terms of: 

— —
”

”
 (1) 

where ” is the dry bulk density [kg*m-3] of the soil, and ”  is the density of water [kg*m-3]. 

Saturated water content — exists when all pores are filled with water. In some instances, it is 

advantageous to express soil moisture in terms of relative saturation, Ὓ —Ⱦ—, which is the 

volumetric soil moisture normalized to — (i.e. the pore volume). In theory, Ὓ ranges from zero, 

https://qa4sm.eodc.eu/
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when the soil is completely dry, to 1, when all soil pores are completely filled with water. In practice, 

however, it is not possible to attain completely dry or completely saturated conditions. There is 

always a residual moisture content — present under dry conditions, and it is also virtually 

impossible to completely de-air soil as air bubbles remain entrapped in dead-end pores and 

cavitation nuclei are held tightly in crevices of rough particle surfaces. To account for —, Ὓ is 

commonly defined as: 

Ὓ
— —

— —
 (2) 

Ὓ ranges from 0 to 1, regardless of soil texture (for further information see Babaeian et al., 2019).  

2.2 Definitions of associated phy sical parameters  
The spectral signature of a material is deýned in the solar-reþective region by its reþectance as a 

function of wavelength, measured at an appropriate spectral resolution. In other spectral regions, 

signatures of interest are temperature and emissivity (TIR, passive microwave) and surface 

roughness (radar) (Schowengerdt, 2007). 

2.2.1 Brightness temperature  

In passive microwave radiometry, the brightness temperature (TB) is a common measurement that 

describes the amount of natural microwave radiation or thermal emission by man-made and 

natural media. The intensity of this radiation (for natural media) depends on the dielectric 

properties and temperature of the media. Because of its insensitivity to cloud cover and solar 

illumination, low frequency TB observations can provide all-weather as well as day-and-night 

remote sensing capability. For the last few decades, TB observations by Earth-orbiting radiometers 

have successfully enabled frequent, global estimation of many important variables for remote 

sensing of the land, ocean, atmosphere, and cryosphere. 

Passive microwave remote sensing of soil moisture is a prime illustration of how TB observations 

can be used to infer the amount of water in soils in terrestrial hydrological science and applications. 

At low frequencies, wet soils (e.g., those with ~40% water by volume) and dry soils (e.g., those 

with ~5% water by volume) exhibit a large contrast in dielectric constant (real part of dielectric 

constant of ~80 for wet soils vs. ~3.5 for dry soils). According to electromagnetic theory, this 

twenty-fold difference in soil dielectric constant between wet and dry soils translates to a large TB 

dynamic range (~90 K for bare soils with a smooth surface at a temperature of 300 K, for example). 

Given the typical radiometric uncertainty of ~1 K or better for modern-day radiometers, this 90 K 

TB dynamic range between wet and dry soils provides a very favorable signal-to-noise ratio (SNR) 

for accurate estimation of soil moisture. 

However, there are many factors that can degrade this TB SNR for soil moisture remote sensing. 

For example, surface roughness introduces additional microwave emission not contributed by soil 

moisture. Without correction and isolation of the microwave emission caused by surface 

roughness, soil surface roughness would lead to an overestimation of soil moisture (i.e., higher 

estimated soil moisture than reality). Aboveground vegetation, on the other hand, poses another 

confounding factor in that it produces its own microwave emission and also attenuates microwave 

emission from the soils underneath through scattering and absorption within the vegetation 

canopy. Left unaccounted for, vegetation would lead to an underestimation of soil moisture (i.e., 

lower estimated soil moisture than reality). Depending on the sensing frequencies, 
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upwelling/downwelling atmospheric radiation and ionospheric effects (e.g. Faraday rotation) would 

also reduce the available TB SNR, leading to further degradation in soil moisture retrieval accuracy. 

Despite the potential uncertainties and degradation in SNR caused by these confounding factors, 

some of their impacts can be more readily mitigated with TB observations acquired at lower 

frequencies such as L-band (1.4 GHz) than, for example, at C-band (6.9 GHz) or X-band (10.7 

GHz). At L-band frequencies, the impacts of surface roughness, low-to-moderate vegetation (up 

to at least 5 kg/m2 of vegetation water content), atmospheric attenuation, and ionospheric effects 

are either more easily correctable or far less dominant than the emission signal due to soil 

moisture. Given these benefits and its status as a protected frequency band allocated for Earth 

remote sensing by international agreements, L-band is considered the most suitable frequency 

range for soil moisture remote sensing, and has been used by soil moisture missions in the past 

decade (e.g., Aquarius, SMOS, and SMAP). State-of-the-art L-band soil moisture retrieval 

algorithms from some of these missions have been validated to demonstrate a retrieval accuracy 

of the unbiased RMSD of less than 0.04 m3/m3 and a correlation of greater than 0.80 from 

multiyear in situ ground truth comparisons. 

The future of L-band radiometry for soil moisture remote sensing hinges on the continued usability 

of its allotted frequency spectrum, which in turn calls for self-enforcement on responsible spectrum 

usage among nations. Although the threat of radio frequency interference from ground-based 

ubiquitous communications infrastructures on protected spectra contamination is real, the 

capability for timely monitoring and reporting of unintentional man-made emission sources is 

essential as a preemptive measure to maintaining the science enabled by observations acquired 

in this segment of the electromagnetic spectrum. 

2.2.2 Backscatter  

In radar-based remote sensing systems, targets scatter a part of the electromagnetic waves 

transmitted by a monostatic active microwave sensor back to the receiver part of the sensor. 

Radar cross section, expressed in m2, is used as a measure to characterize the power scattered 

by the target into a given direction. It is normalized so that it is independent of the level of the 

incident wave. The backscattering coefficient ů0 is used to characterize the backscatter properties 

of a surface type target. It is defined as the scattering cross section per surface area (unit is m2/m2), 

and it depends on radar observation parameters such as the frequency, the polarization, and the 

incidence angle, and surface parameters including the roughness of the surface and dielectric 

properties of the target. 

2.2.3 Reflectance and radiance  

The process of reflection of solar radiation from the Earthôs surface is quantified by reflectance 

(ɟ), which is defined as the ratio of the reflected radiant flux to incident radiant energy under 

specified conditions of irradiation. Spectral reflectance is defined as: 

”‗
ὖ

ὖ
 (3) 

where ὖ is the spectral concentration of the radiant power reflected by the medium and ὖ  is 

the spectral concentration of radiant power incident on the medium (Choudhury, 2014). 

Spectral radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, 

per unit solid angle per unit projected area. It is the directional quantification of energy Le,ɋ,ɜ of a 
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surface per unit frequency or wavelength and is measured by watts per steradian per square meter 

per hertz [WẗsrӇ1ẗmӇ2ẗHzӇ1]. Radiance is used to characterize diffuse emission and reflection of 

electromagnetic radiation. Sometimes spectral radiance is also confusingly called "spectral 

intensity" (Schowengerdt, 2007).  

2.3 Definition of spatial, temporal and geometrical aspects  
As soil moisture is very heterogeneous in space and time (Vereecken et al., 2014) special care is 

needed to describe this variability by remote or in situ observations. The difference in scale 

between point in situ measurements and coarse satellite data retrievals requires a scale change 

during validation. Western and Bloschl (1999) and Bloschl and Sivapalan (1995) stated that each 

observation type consists of a scale triplet, consisting of spacing, extent, and support (Figure 2). 

All three components of the scale triplet are needed to uniquely specify the space dimensions of 

a measurement.  

 

 

Figure 2: The scale triplet (spacing, extent, and support, Western and Blöschl, 1999). 

2.3.1 Spacing  

Spacing refers to the distance between samples. For in situ networks, spacing is the distance 

between its different locations. However, for remote sensing products, it is not that obvious, as the 

spacing between individual raw measurements can be different from the spacing of a gridded 

product. Also, the often synonymously used term spatial resolution is not unique. For microwave 

measurements, spacing indicates the distance between the individual footprints. However, for 

gridded products, the term posting was established to clarify that a certain product has been 

posted on a discrete grid, which is not necessarily its original frame and often implies that some 

resampling of the raw data has occurred. Using the SMAP 9 km product as an example, 9 km is 

the posting of the final product grid after an optimal interpolation, but it is not the spatial resolution 

or the spacing of the raw data. The spacing of the SMAP radiometer footprints is ~40 km, which 

is quite different from the 9 km posting. 

2.3.2 Extent scale 

Extent scale refers to the overall coverage of the measurements. For spaceborne records it could 

refer to the swath during a satellite overpass, but also to the total coverage of a mission, i.e. global 

in terms of near-polar orbiting satellites (e.g., ~85°N to 85°S, typical for soil moisture) and the 

world ñdiscò of geostationary satellites (see also new mission concepts such as CIMR, section 

3.5.12). 
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2.3.3 Support scale 

Support scale refers to the integration volume or area of an observation. E.g., for in situ TDR 

measurements, it is just a few cm3 of a soil, whereas for microwave observations it refers to the 

antenna footprint characteristics. A radiometer footprint is defined by the angular region over which 

the antenna power pattern is less than 3 dB down from its value at the beam center. It depends 

on the angular width of the antenna main lobe, frequency, size of antenna, distance to the surface, 

incidence angle, and processing techniques. For instance, the SMAP radiometer orbits at 685 km 

above Earthôs surface and has a 6 m diameter reflector antenna that provides a real aperture 

support scale around 40 km on the surface. On the other hand, SMOS employs synthetic aperture 

radiometers where the data processing involves inverting the visibility measurements. Its native 

support scale is also in the similar spatial scale of ~40 km. In the case of coherent sensing systems 

such as radars, the support scale could be improved substantially by synthesizing the aperture 

along the orbit of the satellite. A support scale of tens of meters could be reached at the expense 

of speckle noise.  

In theory, the support scale does not only refer to two dimensional information, but also to the third 

dimension of a measurement volume or sensing depth. Here, in regard to soil moisture and 

especially in microwave remote sensing, the vertical penetration depth is of very high importance 

for the interpretation of soil moisture measurements and is therefore discussed in a separate 

section (2.3.5). 

2.3.4 Temporal representation  

The scale triplet mentioned above can be interpreted in both the spatial and temporal domains. 

However, in situ measurements and EO data are acquired in specific time intervals. Most of polar 

orbiting sun-synchronous satellites have ascending and descending nodes where their orbits 

cross the Equator either northbound (ascending node) or southbound (descending node), 

resulting in morning and evening observations. For example, both SMOS and SMAP have 6 a.m./6 

p.m. sun-synchronous orbits, although their orbits criss-cross: SMOS has a 6 am ascending node 

while SMAP has a 6 am descending node. Retrieval of soil moisture has tended to focus on the 

brightness temperatures from 6 a.m. overpasses since thermal equilibrium and reduced 

temperature gradient conditions in near surface soil layers and vegetation is conducive to less 

sub-pixel heterogeneity and greatly simplifies the retrieval process at that time of day; however, 

experience with both SMOS and SMAP has led to soil moisture retrievals at 6 p.m. with only a 

small decrease in retrieval accuracy. Due to their large instrument swath (~1000 km), both SMOS 

and SMAP are able to provide global coverage of the Earth in 3 days at the Equator and in ~2 

days at higher latitudes using just the 6 a.m. retrievals, and 1-2 days using both 6 a.m. and 6 p.m. 

retrievals.  

2.3.5 Penetration depth  

All natural materials have a complex dielectric constant ‐ ‐ Ὦ‐. In general, the dielectric 

constant of a soil volume depends on several factors such as soil moisture content, bulk density, 

texture, temperature, and salinity. Among these quantities, soil moisture is a key factor affecting 

the dielectric constant. The complex dielectric constant also slowly varies with respect to the 

measurement frequency used. The imaginary part of the dielectric constant corresponds to the 

ability of the medium to absorb the wave where the medium converts wave energy into heat due 

to the conduction. 

Penetration depth corresponds to the depth at which the power of a propagating wave decreases 

by a factor of Ὡ   πȢσχ. This distance describes how deep an electromagnetic wave can 
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penetrate into the soil. A convenient way of expressing the penetration depth for low-loss media 

(‐ Ḻ‐) is 


‗Ѝ‐

ςɩ‐
 

(4) 

where ‗ is the free-space wavelength. The penetration depth varies linearly with wavelength. For 

example, a P-band signal (~80 cm wavelength) penetrates to a deeper depth than L-band (~21 

cm wavelength), but the exact depth is variable depending on the composition of the soil and the 

moisture content. The contributing depth of P-band can be down to a depth of ~20 cm. 

2.4 Definition of validation metrics  
The deviation of a single measurement (estimate) from the true value of the quantity being 

measured (estimated), which is always unknown, is described by the term error. The term 

uncertainty refers to the probability distribution underlying an error, which is the actual quantity of 

interest for validation (Gruber et al., 2020). In contrast, the terms trueness, precision, and accuracy 

are popular antonyms for systematic errors, random errors, and the combined systematic plus 

random errors, respectively (Gruber et al., 2020; JCGM, 2008) (JCGM, 2012). 

Satellite soil moisture retrievals are subject to errors from a variety of sources (Gruber et al., 2020). 

The error distribution can vary in space and time. It is often more convenient to summarize the 

multi-dimensional error distribution using a single number, termed a óvalidation metricô. Since 

validation metrics necessarily do not contain all information in the error distribution, no single 

validation metric is capable of fully describing the error distribution. It is, therefore, recommended 

to estimate several complementary validation metrics. For details about the theoretical 

background and a review of state-of-the-art methodologies for estimating errors in soil moisture 

data sets, see Gruber et al. (2020). A conventional error model for soil moisture observations is: 

—  — ‐ (5) 

where — is the true soil moisture, — is the estimated soil moisture,  is a constant additive bias, is 

a constant multiplicative bias and ‐ is a zero mean random variable. Under this model, errors are 

either ósystematicô (ȟ) or órandomô (‐). While none of the following sections require the 

assumption that ‐ is Gaussian, it can be both a useful and reasonable simplification to make. A 

Gaussian random variable is defined exactly by its first two moments, i.e., its mean and variance. 

Other distributions have non-zero higher-order moments. However, in practice, it can be difficult 

to estimate higher-order moments from finite samples due to rapidly increasing sampling error 

with increasing order of moments. This means that, for standard applications and sample sizes, 

estimates of higher-order moments are often statistically indistinguishable from zero; in this case, 

the error distribution is statistically indistinguishable from Gaussian. 

In this section, four common validation metrics are discussed. First, the root mean squared 

difference (RMSD) and unbiased RMSD (ubRMSD) are introduced, which, under the right 

assumptions, can be interpreted as estimates of the standard deviation of ‐. Second, the mean 

bias (B) is introduced, which, under the right assumptions, can be interpreted as an estimate of . 

Then, the Pearson correlation coefficient (ὶ) is discussed, which can be interpreted as a 

normalized estimate of . Also triple collocation (TC) metrics are discussed. These resemble the 
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ubRMSD and ὶ, but need three data sets for their estimation, neither of which is required to be 

free of random errors in order to estimate the standard deviation of ‐ (Gruber et al., 2016; McColl 

et al., 2014; Stoffelen, 1998; Yilmaz and Crow, 2014). Additionally, TC analysis enables estimation 

of the signal-to-noise ratio (SNR) of a data set. The SNR is closely related to ὶ, which can also be 

interpreted as a normalized (between -1 and 1) representation of the SNR (Gruber et al., 2016). 

Together, these metrics fully characterize the error distribution as formulated in equation (5). Note 

that the given metrics can still be used when listed assumptions are not met; however, in these 

cases, they do not reduce to their simplified interpretations. Finally, temporal stability analyses 

and validation of downscaled products is discussed. Details about the additional metrics of 

temporal autocorrelation can be found in Rebel et al. (2012), Raoult et al. (2018), and Piles et al. 

(2018). 

2.4.1 Root Mean Squared Difference  

The root mean squared difference (RMSD) is defined as 

ὙὓὛὈ Ὁ — —  (6) 

where ὉϽ is the expectation operator, which in practice is estimated as either the temporal or 

spatial mean (Entekhabi et al., 2010). For the case where — is an unbiased estimate of — (i.e, 

π and  ρ) and ‐ is a Gaussian random variable with mean zero, the RMSD is exactly 

equivalent to the standard deviation of ‐. 

2.4.2 Unbiased Root Mean Squared Difference  

The unbiased root mean square difference (ubRMSD) (Entekhabi et al., 2010) is defined as 

όὦὙὓὛὈ Ὁ — Ὁ— — Ὁ— . 
(7) 

Compared to the RMSD, the ubRMSD can be interpreted as the standard deviation of ‐ under a 

less restrictive set of assumptions: specifically, it does not require that  π. This can be easily 

extended to the case where there is a seasonally-varying contribution to the error. 

2.4.3 Mean Bias 

The mean bias is defined as 

ὄ  Ὁ— — 
(8) 

Under the assumption that  ρ, ὄ is exactly equivalent to . A bias can potentially be removed 

by rescaling (Koster et al., 2009; Reichle and Koster, 2004), although caution should be exercised 

in doing this (Gruber et al., 2016; Yilmaz and Crow, 2013); see next section. 

2.4.4 Pearson correlation coefficient  

For the error model given in equation (5), ordinary least squares regression can be used to 

estimate . However, it is more common in the literature to report a standardized quantity, that is 

related to : the Pearson correlation coefficient, ὶ, which is given by 
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ὶ . (9) 

It is related to  by the relation 

  ὶ . 

(10) 

The main advantage of reporting r over  is that it is a normalized quantity: ὶ takes values between 

-1 and 1, with a positive slope indicating  π, and vice versa. The larger the absolute magnitude 

of ὶ, the larger the signal-to-noise ratio (Gruber et al., 2016; McColl et al., 2014). 

2.4.5 Triple collocation metri cs 

Triple Collocation (TC) metrics require three data sets for their estimation. For defining the metrics 

we will use the subscripts ὼ, ώ and ᾀ to refer to these data sets, and „ to refer to the covariance 

between data sets. The key advantage of TC is that -- provided its underlying assumptions are 

met -- it allows for unbiased error metrics to be estimated in the typical case where a 

representation of the true geophysical variable (—) is unavailable. These underlying assumptions 

require that observations x,y and z are: (i) linearly related to true soil moisture via Eq. 5, and (ii) 

contain errors that are mutually independent -- both with regards to each other (i.e., mutual 

independence) and to true values of the geophysical variable (i.e., error orthogonality). 

2.4.5.1 Unbiased Root Mean Squared Difference 

Using TC, the root mean squared difference (ubRMSD) of ὼ can be obtained from 

όὦὙὓὛὈ „ . 
(11) 

If the assumptions of orthogonality and zero error cross-correlation are met, then όὦὙὓὛὈ  is a 

consistent estimator for the temporal standard deviation of errors in x (Gruber et al., 2016). 

2.4.5.2 Correlation against the unknown truth  

Likewise, TC allows for the robust estimation of the linear correlation between x and the unknown 

truth — as (McColl et al., 2014) 

ὶ . 
(12) 

Unlike the direct sampling of a Pearson correlation coefficient between ὼ and ώ (or ᾀ), ὶ is ï if 

assumptions are met ï not impacted by the presence of random error in ώ or ᾀ.  

2.4.5.3 (Logarithmic) signal -to-noise ratio  

TC analysis also allows us to estimate the SNR (Gruber et al., 2016) directly as 
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ὛὔὙ  ρπ ὰέὫ ρ. 
(13) 

Notice in the above equation that the SNR is estimated in decibel (dB) units, i.e. linearized for 

easier visualization and interpretation (0 dB means that the signal variance equals the noise 

variance and every plus/minus 3 dB corresponds to a doubling/halving of the SNR).  

2.4.6 Stability  

Stability is defined in various ways by different organizations. The definition adopted by LPV of 

JCGM (2008) refers to stability as the property of a measuring instrument whereby its metrological 

properties (i.e. calibration and uncertainties) remain constant in time. The GCOS requirements 

(WMO, 2016) refer to stability as the extent to which the systematic uncertainty of the 

measurement changes over time. With the differences in these definitions, in addition to the 

challenges related to assessing the accuracy of satellite derived products (described in other 

sections), the definition of a method for monitoring stability becomes difficult. 

Stability may be thought of as the extent to which the uncertainty of measurement remains 

constant with time. Here, we would refer to the maximum acceptable change in systematic error, 

usually per decade. 

This is in line with second order stationarity, where seasonal cycles were excluded. The properties 

of stationary time series do not depend on the time at which the series is observed. If a trend is 

observed, the time series is not stationary.  

2.4.7 Temporal stability analysis  

Different from the product stability in the section before is the method named Temporal Stability 

Analysis (TSA), which was initially proposed by Vachaud et al. (1985) as a means to assess the 

time invariant distribution of soil moisture. At the heart of TSA is the mean relative difference 

(MRD), which is defined as: 

 В ȟ
  (14) 

where Ὓȟ is the soil moisture at time Ὥ at location Ὦ and is the average across locations Ὦ at time 

Ὥ. This results in a set of mean relative differences detailing the comparison of a location or soil 

moisture data point to the overall average of soil moisture in the domain of study.  

The variance of the MRD is defined as: 

„ В ȟ    
(15) 

and the RMSD of the relative differences is defined as: 

ὙὓὛὈ  „
Ⱦ

. 
(16) 

The RMSD is the quantification in a single metric for the overall best sampling location within a 

set of field sites or network. 
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It is often observed that soil moisture patterns are repetitive and controlled by a variety of factors 

including soil texture, slope, aspect, hydraulic conductivity, etc. More simply described, there are 

persistent wet and dry regions within a given area, and these patterns can be used to determine 

more efficient means of measuring the characteristics of the soil moisture field. It is not necessary 

to have hundreds of soil moisture measurements to estimate with high confidence what is the soil 

moisture average, which is useful for soil moisture validation. TSA is a common technique for 

demonstrating the validity of an in situ soil moisture network to estimate field, watershed, or 

regional scale soil moisture.  

Since the introduction of TSA, many studies have demonstrated the efficiency that this analysis 

can introduce into a cal/val program, including Martinez-Fernandez and Ceballos (2003), Cosh et 

al. (2008), and Molero et al. (2018). TSA is beneficial for network management and quality control 

as well as establishing confidence in the representativeness of a validation data set for remote 

sensing comparisons. It is often difficult to deploy a great quantity of resources for the life of a 

remote sensing platform, but by short-term intensive periods of observation in relation to a long-

term network of stations, it is possible to develop a robust and high quality validation data set for 

comparisons on a multi-year timescale. 

2.4.8 Performance Metrics for Soil Moisture Downscaling  

Typical validation activities are focusing on the error metrics for validating time series (including 

also spatial representativity, spatial resampling etc.). The question of whether the spatial patterns 

are adequately represented is often not addressed. Many downscaling techniques have been 

developed (see section 3.5.9), and papers are published where the downscaling result is validated 

with time series metrics of just a few stations. To really validate the spatial improvement, the spatial 

correlations should be calculated at each point in time, resulting in a time series of ὶ (Montzka et 

al., 2018), or summarized as boxplots as in Kolassa et al. (2017a).  

To be more comprehensive, Merlin et al. (2015) proposed a new performance metric named 

ὋὈὕὡὔ to quantitatively assess with a single value the overall gain achieved at high resolution 

(subscript ὌὙ) with respect to the low resolution (subscript ὒὙ). Especially, the sign of ὋὈὕὡὔ 

(positive in the case of effective disaggregation and negative in the opposite case) is independent 

of the uncertainties in the low-resolution observation and of the representativeness of localized in 

situ measurements at the target downscaling resolution. ὋὈὕὡὔ is defined as: 

Ὃ Ὃ Ὃ Ὃ Ⱦσ. (17) 

ὋὉὊὊὍ is the disaggregation (efficiency) gain on the bias in the slope of the linear fit relative to the 

non-disaggregation case: 

Ὃ
ȿρ Ὓ ȿ ȿρ Ὓ ȿ

ȿρ Ὓ ȿ ȿρ Ὓ ȿ
 

(18) 

with ὛὌὙ and ὛὒὙ being the slope of the linear regression between soil moisture retrievals and in 

situ measurements at high and low resolution, respectively (ὛὌὙ ὶ „ Ⱦ„  and ὛὒὙ
ὶ „ Ⱦ„ ȟ where „  is the standard deviation of in situ soil moisture).  
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ὋὖὙὉὅ is the disaggregation (precision) gain on time series correlation relative to the non-

disaggregation case: 

Ὃ
ȿρ ὶ ȿ ȿρ ὶ ȿ

ȿρ ὶ ȿ ȿρ ὶ ȿ
 

(19) 

with ὶ  and ὶ  being the time series correlation computed at high and low resolution, respectively 

(Eq. (9)). Ὃ  can be interpreted as characterizing the precision of the disaggregation method 

to be evaluated.  

Ὃ  is the disaggregation (accuracy) gain on the mean bias relative to the non-downscaled case: 

Ὃ
ȿὄ ȿ ȿὄ ȿ

ȿὄ ȿ ȿὄ ȿ
 

(20) 

with ὄ  and ὄ  being the mean bias computed at high and low resolution in Eq. (8), respectively. 

Ὃ  can be interpreted as characterizing the accuracy of the disaggregation method. For further 

details see Merlin et al. (2015), an application can be found, e.g., in Piles et al. (2016). 

3 GENERAL CONSIDERATIONS FOR SPACEBORNE SOIL MOISTURE 

PRODUCTS 

3.1 Dielectric mixing models  
The microwave region of the electromagnetic spectrum has shown immense potential in accurate 

and efficient measurement of soil moisture using both the space-borne sensor and point-based in 

situ techniques (Engman and Chauhan, 1995; Njoku and Entekhabi, 1996). Soil moisture 

estimation techniques rely on the electrical properties of soil such as its dielectric constant, for 

which there is a significant difference between dry soil (~3.5) and pure water (~80) at microwave 

frequencies (Schmugge et al., 1992). The following sections will further discuss different aspects 

involved in soil moisture modeling using radiometer measurements, as well as a review of some 

of the most widely used dielectric mixing models for SM estimation using L-band measurements. 

A microwave radiometer measures the thermal emission from the Earth's surface, which at 

microwave frequencies is the product of the soil temperature and surface emissivity commonly 

known as the brightness temperature (TB). This brightness temperature is used as input in soil 

moisture retrieval algorithms to estimate surface soil moisture content. Mladenova et al. (2014) 

explains that the overall process of SM retrieval using passive microwave approaches basically 

involves two major stages. Stage I entails modeling the thermal emission from the Earth's surface 

using radiative transfer theory, while in Stage II, a soil-water dielectric mixing model is applied for 

SM estimation. A third important component, the Fresnel equations, combines the two stages. 

However, the accuracy of the retrieval process depends largely on selection of optimal 

parameters, among which dielectric mixing models are a very important consideration (Bolten et 

al., 2003; Merlin et al., 2008; Panciera et al., 2008; Piles et al., 2011). 

A dielectric mixing model is an essential part of soil moisture retrieval using remote sensing data 

(Mironov et al., 2004). The mixing model is employed to calculate the complex permittivity of a dry 

and wet soil-water mixture as a function of various soil and sensor properties such as soil texture, 
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temperature, salinity, free and bound water permittivity, and frequency. Figure 3 shows the 

relationship between permittivity and soil moisture for five different soil texture classes. The 

technical literature domain cites a number of soil dielectric models such as Wensink, Knoll, 

Heimovaara, Curtis, Nguyen, Halllikainen, Wang and Schmugge, Dobson, and Mironov. Dielectric 

models are widely grouped as 1) phenomenological (Cole-Cole model (Cole and Cole, 1941), 

Debye relaxation model (Debye, 1929)), 2) volumetric (Complex Refractive Index, CRI model 

(Birchak et al., 1974), Maxwell De Loor model (Loor, 1968)), 3) empirical (Wang and Schmugge, 

1980), 4) semi-empirical model (Dobson et al., 1985; Mironov et al., 2004; Park et al., 2019), and 

5) volumetric model based on the input data requirement (Srivastava et al., 2015; van Dam et al., 

2005). 

 

Figure 3: Dielectric constant for five soil textures at 1.4 GHz (Hallikainen et al., 1985). 

Phenomenological models such as the Cole-Cole and Debye relaxation models allow calculation 

of complex dielectric properties of a soil- water mixture at specified frequencies by relating the 

characteristic relaxation time period to the frequency dependent behavior of the materials, such 

as the induced polarization effect as a function of frequency. Due to complex calculation and 

recalibration for specific materials, these models are not widely used and are only documented in 

a limited number of studies. Volumetric dielectric models estimate the dielectric behavior of soil 

based on relative amounts of soil constituents. These models require solid matter proportion, pore 

space, and volumetric water content as input parameters for the retrieval process. Empirical 

models use the mathematical relationship between the dielectric properties and soil medium 

characteristics such as volumetric water content and bulk or apparent relative permittivity for 

calculation of dielectric properties. Data for these models were initially generated using time 

domain reflectometry (TDR) probes for different soil types. Artificial Neural Networks (ANN) are 

the latest addition in this category and are widely applicable by providing an alternative means for 
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describing the relationship between the soil moisture and the relative permittivity of the soil water 

mixture. Semi-empirical models fuse the empirical and volumetric models, and are currently 

considered some of the most advanced and accurate ones in estimating the complex dielectric 

constant of soils. Semi empirical models such as the Mironov and Dobson models use site-specific 

results from the volumetric models, pre-calibrated for specific combinations of soil types, to 

calculate the complex frequency dependent characteristics of soil dielectric constants. These 

models take the percentage of sand and clay particles, volumetric water content, bulk density, soil 

physical temperature, and the relative fraction of bound and free water as input parameters to 

outline the behavior of the real and imaginary parts of the soil dielectric constant. A brief review of 

the most popular models for L-band soil moisture retrieval are presented below, namely the 

Halllikainen, Wang and Schmugge, Dobson, and Mironov models. Results from a case study 

assessing the comparative performance of these models are also briefly described.  

3.1.1 Soil Water Dielectric Mixing Models: Wang and Schmugge  

Wang and Schmugge (1980) proposed an empirical dielectric mixing model that outlined the 

influence of soil texture on the complex soil water dielectric constant. This model was based on 

the variation of soil dielectric properties with soil moisture content depending on different soil 

types. The Wang and Schmugge model calculates the dielectric constant of the soil from the 

known dielectric constants or refraction indices of air, water and ice and the volume fraction of 

each constituent. The development of this model followed two approaches: the first approach was 

to deal with the resultant dielectric mixing of the soil-water mixture represented in terms of the 

constituent materials, while the second approach accounted for the refractive index of the mixed 

constituents to get the resultant refractive index of the soil-water mixture. The proposed model 

took into account the property of the initially absorbed water molecule below the transition point of 

soil moisture, which was found to be strongly correlated with the soil wilting point and ultimately to 

the soil texture. Thus, this model offered a unique possibility to quantify the dielectric constant 

according to the soil type, unlike the other previous models which only considered soil as a mixture 

of two constituents (dry soil or rock and pure water). Wang and Schmugge used data sets derived 

from previous experiments to study the dielectric behavior of the constituents of the soil-water 

mixture at 1.4 and 5 GHz over a wide range of soil moisture from 0.0-0.5 m3/m3.  

As explained earlier, the first approach accounts for the direct mixing of the dielectric constants of 

the constituents as  
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where ὖ is the porosity of the dry soil, and ‐, ‐ , ‐, and ‐ in sequential order are the dielectric 

constants of air, water, rock, and ice. ‐ is the dielectric constant for the initially absorbed water, 

and  is the parameter chosen to best fit Equations (22) and (24) to the experimental data. At low 

frequencies for the dielectric constant of the imaginary part, the total dielectric loss adding the 

conductivity loss is represented as 
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where ‐  is the total dielectric losses, „ is the ionic conductivity [mhos/cm], ‗ is the wavelength 

[cm], ‐ is the imaginary part of dielectric constant, and  is a fitting parameter. In the second 

approach, the mixing is represented as the refractive indices of the air, water, rock and ice, and 

‐, ‐ , ‐, and ‐ are replaced by the refractive indices in the above Equations (21) to (24). 

3.1.2 Soil Water Dielectric Mixing Models: Ha llikainen  

Hallikainen et al. (1985) in the first set of two experiments introduced an empirical dielectric mixing 

model to estimate the dielectric constant of the soil-water mixture more precisely and accurately 

over a broad frequency range between 1-18 GHz for different soil types based on specified soil 

physical characteristics. The microwave dielectric constant of the soil in this model was 

represented as a function of soil moisture content, physical temperature, and soil texture 

composition. Several experiments were conducted to derive the dielectric constant of five different 

types of soil at room temperature and at frequencies between 1.4-18 GHz using a waveguide 

technique (for 1.4 GHz and 4-6 GHz) and free space transmission technique (for 4-18 GHz in 2 

GHz increments). The dielectric constant for each frequency was represented using polynomial 

expressions dependent on volumetric soil moisture content and sand and clay percentage 

separately for the real and imaginary part of the dielectric constant. This model introduced the 

concept of free and bound water presence in the soil- water system, with dielectric constant as a 

function of 1) frequency, temperature and salinity, 2) total volumetric soil moisture content, 3) 

relative fraction of bound and free water which is related to the soil surface area per unit volume, 

4) bulk density of the soil, 5) shape of the soil particles, and 6) shape of the water inclusions. 

To represent the real ‐ and imaginary ‐ part of the dielectric constant as a function of volumetric 

water content ά  and the percentage of sand Ὓ and clay ὅ, the general form of the expression 

can be represented as 

2
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Important inferences of these experimental measurements were: 
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1) the dielectric constant of the soil-water mixture is a function of volumetric water content ά  

and soil texture composition.  

2) the dielectric constant of dry soil is independent of texture and frequency under controlled 

density effects.  

3) the frequency behavior of ‐ for wet soil and water was found to be similar and only reduced 

in magnitude between 1.4 to 18 GHz.  

4) for ‐, the minimum value was found between 2-4 GHz due to salinity effects while the 

maximum value was obtained at frequencies near 17 GHz due to the relaxation of water 

at normal room temperature.  

5) Both ‐ and ‐ were found to decrease with a decrease in temperature below 0°C.  

3.1.3 Soil Water Dielectric Mix ing Models: Dobson 

The Dobson model (Dobson et al., 1985) was proposed in a second series of experiments studying 

the behavior of microwave dielectric properties of wet soil as a function of soil moisture and soil 

textural composition in 1985. The main objective behind developing this model was the failure of 

the Wang and Schmugge model in efficiently predicting the behavior of ‐ and conductivity losses 

based on soil type and water content.  

The Dobson model is a semi-empirical dielectric mixing model based on the refractive index 

requiring easily available information about soil physical parameters such as volumetric soil 

moisture content (ά ), bulk density ” , and sand (Ὓ) and clay (ὅ) fraction. An empirical model 

proposed by Birchak et al. (1974) based on refractive volumetric mixing was used to understand 

the responses of dielectric properties to these soil physical parameters and to address the first 

proposed objective. The expressions representing the Birchak model are given by 
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where Ŭ is a constant shape factor; when Ŭ=0.5, Eq. (29) describes refractive mixing and when 

applied to moist soil can be represented as  

aaaaa eeeee bwbwfwfwsass VVVV +++=  (30) 

The subscripts ί, ὥ, Ὢύ and ὦύ refer to the soil solids, air, free water, and bound water, 

respectively. 

Due to the value of the complex dielectric constant of bound water not being well-known and to 

avoid lengthy calculations for the volume fraction, the following approximation is made in Eq. (30) 

and is represented as 

aaab eee bwbwfwfwfwv VVm +=  (31) 

where the value of the empirical constant  depends on the texture composition of the soil. For a 

given soil with bulk density (”), specific density (”), and volumetric soil moisture content (ά ), 

the final expression for the semi-empirical model is  
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3.1.4 Soil Water Dielectric Mixing Models: Mironov  

In 2004, Mironov et al. (2004) introduced a generalized refractive dielectric mixing model 

(GRMDM) applicable over a wide range of soil moisture, texture, mineral content and frequency. 

The model presented was a modified version of a previous refractive mixing dielectric model 

(RMDM) (Birchak et al., 1974) considering soil as a biphasic system. It also introduced the concept 

of intrinsic bound soil water (BSW) and free-soil water (FSW) and the complex dielectric constant 

(CDC) for both the constituents obtained through the straight-line fitting method. The CDC is 

derived through the measured soil complex refractive index (CRI) mathematically obtained as the 

square root of CDC and as a function of soil moisture. In the modified RMDM, the CDC is 

considered as a function of both soil moisture and frequency. Expressions representing the 

GRMDM can be written in the following set of equations. 

According to the RMDM, the CRI of moist soil can be calculated by mixing the CRIs of the separate 

constituents of the soil as weighted by their partial volumetric contents 

i

i

i Wä= ee  (33) 

where ‐ is the soil CDC, and ὡ  and ‐ are the volume fraction and CDC of the Ὥth soil component 

such as mineral solids, air, and soil water (salinity). Considering soil as a three-component system, 

Eq. (33) can be modified as 

WWW waamms eeee ++=  (34) 

Where subscripts ί, ά, ὥ and ύ refer to the bulk moist soil, mineral particles, air, and water, 

respectively. Subscript ύ is omitted when applied to the volumetric soil moisture as 

WWw =  (35) 

and, 

WWW ma --=1  (36) 

and since ‐ ρ, Eq. (36) can be rewritten as 
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where ‐ is the CDC of the absolutely dry soil and can be determined by the dielectric constant of 

soil solids and bulk density as 
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where ‐  is the CDC of the dry soil and ὡ  is the volume fraction of solids in a dry soil which is 

obtained through ὡ ”Ⱦ” , where ” and ”  are the bulk and specific density of the dry soil, 

respectively. 

The CRI, ὲᶻ Ѝ‐, can be expressed in terms of the refractive index (RI) ὲ and the normalized 

attenuation coefficient (NAC) which is considered as a proportion of the standard attenuation 

coefficient to the free space propagation coefficient, Ὧȟ as 

jknn -==* e  (39) 

where Ὦ is an imaginary unit. The RI and NAC can be derived from two expressions simplifying 

Eq. (37) as 
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and  
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If the RI and NAC are known, the respective value of dielectric constant ‐ȭ and loss factor ‐ȱ can 

be calculated as 

22' kn -=e  (42) 

and 
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The inverse transformation of the above equation is 
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3.1.5 A comparative performance analysis of soil dielectric mixing models: case studies  

This section reports some of the previous experiments performed with the above mentioned soil 

dielectric mixing models using L-band radiometer measurements, and highlights the performances 

of these models in soil moisture retrievals at various reported sites. 

To assess global soil moisture patterns observed by spaceborne microwave radiometers and 

scatterometers under different vegetation conditions at selected experimental sites across the 

USA, Spain, Australia, France, West Africa, and Ukraine, de de Jeu et al. (2008) used the Wang 

and Schmugge dielectric model to describe the behavior of dielectric properties of soil-water 

mixtures for different soil textures (sand, loam, and clay). Results of this study showed good 

performance of the model in retrieving surface soil moisture and a linear relationship between the 

soil dielectric constant and soil moisture content. However, a non-linear relationship was observed 

at low moisture content. The reason given for this nonlinearity was the formation of a strong bond 

between the soil particle surface and the thin water film surrounding it under water deficit 

conditions. 

To test the efficiency and performance of the Hallikainen mixing model, Hallikainen et al. (1986) 

conducted a comparative analysis of dielectric measurements from the model at nine frequency 

intervals between 3-18 GHz and at 37 GHz using the free-space transmission technique against 

the Polder-Van Santen model. Both models were found to satisfactorily describe the dielectric 

behavior of snow and wet soils.  

In a first evaluation study of the comparative performance of the Dobson and Mironov models 

using SMOS measurements and the L-Band Microwave Emission of Biosphere (L-MEB) model in 

2015, Mialon et al. (2015) retrieved soil moisture values using these data sets and tested them 

against in situ soil moisture measurements for some selected SMOS validation sites located in 

various climatic regions. Results of this study showed better performance for the Mironov model 

over the Dobson model in retrieving soil moisture at a global scale. 

In an experiment to analyze the performance of these soil dielectric mixing models in soil moisture 

retrievals using the combined radar/radiometer (ComRAD) ground-based L-band simulator for the 

SMAP mission and single-channel algorithm at H-polarization (SCA-H) version of the tau omega 

model, Srivastava et al. (2015) conducted a field experiment during summer 2012 over corn fields 

at United States Department of Agriculture (USDA) test site using ComRAD measurements and 

in situ soil moisture and theta probe sensors. Parameters such as brightness temperature (TB) at 

horizontal (H) and vertical (V) polarization measured by ComRAD, soil temperature, and 

Vegetation Water Content (VWC) were used to retrieve soil moisture using SCA-H and various 

dielectric mixing models -- Mironov, Dobson, Wang and Schmugge, and Hallikainen. Results 

obtained were compared using the highest performance statistics combination in terms of high 

correlation (ὶ), low RMSD, and lowest bias scores. The study showed best performance by the 

Mironov dielectric model (ὶ=0.79; RMSD=0.04 m3/m3; bias=0.01), followed by the Dobson model 

(ὶ=0.76; RMSD=0.04 m3/m3; bias=-0.01), Wang and Schmugge (ὶ=0.79; RMSD=0.04 m3/m3; 

bias=0.02), and Hallikainen model (ὶ=0.76; RMSD=0.06 m3/m3; bias=0.04), suggesting a marginal 

advantage of the Mironov dielectric model for soil moisture retrieval using passive microwave 

measurements.  

Accurate and efficient retrieval of soil moisture using remote sensing data depends largely on 

careful selection of retrieval parameters such as which soil dielectric mixing model to use. 

Dielectric mixing models calculate the complex permittivity of the dry and wet soil-water mixture 
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as a function of various soil and sensor properties such as soil texture, temperature, salinity, free 

and bound water permittivity, and microwave frequency. A number of mixing models have been 

developed, but several experiments show that the Mironov model, followed by the Dobson, Wang 

and Schmugge, and Hallikainen models, are the most efficient ones for soil moisture retrieval 

using L-band measurements. Recently, a dielectric mixing model accounting for organic matter in 

mineral soils has been developed (Park et al., 2019) which could extend the range of validity of 

the dielectric models used to higher organic soils. 

3.2 Soil moisture retrieval from brightness temperature  
As noted in section 2.2.1, soil moisture retrieval from brightness temperature (TB) primarily benefits 

from the high sensitivity of TB in response to soil moisture change. For example, TB from bare soils 

with a smooth surface could exhibit a change of ~90 K between dry soil (~5% water by volume) 

and wet soil (~40% water by volume) conditions. With a typical radiometric uncertainty of < 1 K in 

modern radiometers, the resulting large signal-to-noise ratio allows for accurate estimation of soil 

moisture. 

 

Figure 4: Contributions to the top-of-atmosphere brightness temperature (Kerr et al., 2010a). 

The zeroth order radiative transfer model (a.k.a. the "tau-omega" model) is a common forward 

model that relates soil moisture to TB observations (Mo et al., 1982). Over the last few decades, 

its usefulness has been demonstrated at various spatial scales based on agreement between in 

situ ground truth and ground-based, airborne and spaceborne TB observations. Besides its 

relatively good accuracy, the model is also relatively straightforward to deploy over large spatial 

scales due to its modest parameterization requirements. The model provides an end-to-end 

physics-based description of how the impact of soil moisture on soil dielectric properties affects 

the TB from soils as well as the TB interaction between soils and vegetation through scattering and 
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absorption (Figure 4). Operationally, a full formulation of the model often requires additional 

ancillary data to provide TB correction before soil moisture retrieval is attempted. Common 

ancillary data include (1) land/water mask to correct for TB contamination due to water near 

coastlines or open-water bodies, (2) vegetation indices such as LAI or NDVI to correct for TB 

scattering, absorption and emission by vegetation, (3) surface roughness and soil temperature for 

surface emissivity estimation, and (4) soil texture as inputs to soil dielectric models (O'Neill et al., 

2015). 

Radiometer-based or passive soil moisture retrieval begins with solving for the estimated soil 

moisture from the tau-omega model with actual TB observations and prior information from the 

ancillary data listed above as constraints. The retrieval process is often of an iterative numerical 

nature, in that an initial numerical guess is used as a "seed" to search for an estimated soil 

moisture that predicts the actual TB observations according to the model either analytically as with 

single-channel TB observations or in a least-squared sense as with multi-channel TB observations, 

which would involve concurrent observations at multiple observation angles, frequency channels, 

and/or polarization planes. Both single-channel and multi-channel soil moisture retrieval 

algorithms have been extensively studied in field experiments and tested with airborne TB 

observations in field campaigns or spaceborne TB observations by Earth-orbiting radiometers such 

as Aqua/AMSR-E, GCOM-W/AMSR2, Aquarius/SAC-D SMOS and SMAP. State-of-the-art L-

band soil moisture retrieval algorithms from some of these missions have been validated using in 

situ ground truth to demonstrate a retrieval accuracy of an unbiased RMSD of less than 0.04 m3/m3 

and a correlation of greater than 0.80. 

Earlier field campaigns had established that TB observations acquired at L-band (1.4 GHz) exhibit 

greater sensitivity to soil moisture variability compared with those acquired at higher frequencies 

such as C-band (6.9 GHz) or X-band (10.7 GHz) (Wang et al., 1990). During the last decade, 

technological and engineering advances have matured to a point where the construction of large 

and lightweight antennas for L-band has become practical, leading to a series of L-band 

radiometer instruments (e.g. Aquarius/SAC-D, SMOS, and SMAP) that provide TB observations 

useful for frequent and global remote sensing of soil moisture from space. 

Pioneer work showed the possibility to retrieve simultaneously soil moisture and vegetation 

opacity (2-Parameter retrievals) from multi-angular passive microwave measurements (Wigneron 

et al., 1995). This step was key as it avoided the complex step of estimating vegetation effects 

externally from ancillary data. Moreover, vegetation opacity was potentially a very interesting index 

to monitor the dynamics of vegetation (Wigneron et al., 2017). The soil moisture retrieval algorithm 

for the SMOS satellite was based on this principle (Wigneron et al., 2000). However, the multi-

angular characteristics need to be considered for the parameterization of both soil and vegetation 

(Wigneron et al., 2017; Wigneron et al., 2007; Wigneron et al., 2004). Multi-angular signatures of 

rough soils were investigated based on both experimental (Wigneron et al., 2011; Wigneron et al., 

2017) and simulated data (Lawrence et al., 2013) and led to the development of simple and 

accurate modelling based on the H-Q-N approach after Wang and Choudhury (1981), where the 

rough-surface reflectivity is a function of the specular reflectivity of a smooth surface and the 

roughness parameters H (intensity of the roughness effects), Q (polarization mixing parameter), 

and N (parameter to better account for multi-angular and dual-polarization measurements). In 

addition, vegetation may present strong anisotropy which may affect the multi-angular and dual-

polarization signatures of vegetation-covered areas. For instance, the effects of vegetation 

anisotropy on optical depth with respect to incidence angle and polarization were found to be very 
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significant for crop types with a vertical (stem-dominated) structure. The opacity of a well-

developed wheat canopy was found to be three times higher at V- than at H-polarization (0.3 vs 

0.1) (Wigneron et al., 2004). To account for these effects, in the SMOS retrieval vegetation opacity 

is expressed as a function of the opacity at nadir, where also the intensity of opacity change related 

to the incidence angle is implemented (Wigneron et al., 2004). 

3.3 Soil moisture retrieval from backscatter  
For active microwave remote sensing of soil moisture, the intensity and phase of a reflected 

microwave signal are input to radar-based soil moisture retrieval algorithms. The ratio of the 

transmitted and reflected intensity, radar backscattering coefficient („), is also referred to as 

ónormalized radar cross section (NRCS)ô and ónormalized bistatic RCS (NBRCS)ô in the 

backscattering and bistatic directions, respectively. „  is usually given in decibel units (dB) with 

minus tens of dB for NRCS to plus tens of dB for NBRCS, subject to mono- or bistatic acquisition 

scenarios, the local incidence and scattering angles, peak power transmit, transmit/receive 

polarizations, and finally the properties of the media under investigation. 

Satellites operating at X-, C-, S-, and L-bands have been used with center frequencies at ~10, 

5.4, 3.2, and 1.3 GHz, respectively. Observation of dynamic range indicates that „  tends to be 

most sensitive to the changes in vegetation, then to soil surface roughness, and lastly to soil 

moisture (as an example of dynamic range at L-band, 10 dB for vegetation (Fig 5 (McNairn et al., 

2015)), 7 dB for roughness, and 4 dB for soil moisture (Fig. 4 (Kim et al., 2012)). Consequently, 

how well the effects of vegetation and roughness are accounted for by correction or signal 

decomposition (Jagdhuber et al., 2014), and the validation of the correction or decomposition, are 

as important as soil moisture validation itself. Issues associated with validating soil moisture 

retrieved by radar backscattering coefficients are discussed below. 

3.3.1 State-of-the-art algorithms (regarding spaceborne SAR data)  

The first group of algorithms do not employ/use electromagnetic scattering models for soil 

moisture retrieval. Semi-empirical (Burgin and van Zyl, 2016) or machine learning methods 

(Paloscia et al., 2013; Pasolli et al., 2015) are trained using existing data sets, and may need 

additional adaptation for global application. Change detection concepts estimate temporal 

variations in soil moisture by assuming that vegetation is static over the monitoring period 

(Ouellette et al., 2017) or by developing a data-driven correction of the vegetation 

effect/influence/bias (Bauer-Marschallinger et al., 2019). The former algorithm, assuming static 

vegetation, experiences a challenge when plants grow rapidly and the monitoring period extends 

towards months; and the latter algorithm, using data-driven correction methods, limits the spatial 

resolution to ~1 km at present. 

The second group of algorithms incorporates a scattering model for forward modelling and 

inversion purposes. One of the most widely used semi-physical models is the Water Cloud Model 

(Attema and Ulaby, 1978) that has calibration coefficients for each scattering mechanism (Bousbih 

et al., 2017; McNairn et al., 2012). The model lacks a double-bounce component and it tends to 

be site-specific due to the tuning coefficients. Simplified physical scattering models were 

developed and inverted (Kim et al., 2017). However, developing a physical model for each plant 

type is a challenge. Lastly, polarimetric decomposition techniques (Jagdhuber et al., 2014) allow 

extraction of the surface scattering component, followed by direct inversion of soil moisture. The 

limitations of this approach are the efficacy/quality of removing the effect of vegetation and 

roughness, as well as the need for fully polarimetric observations which places requirements on 



40 

 

sensor acquisition configuration and constrains the data refresh rate. This summary does not 

include the current progress being made with Global Navigation Satellite System and 

Reflectometry (GNSS-R) data, airborne studies (e.g. P-band), and Interferometric Synthetic 

Aperture Radar (InSAR) approaches. 

3.3.2 Product (soil moisture) accuracy goal  

A major driver of radar soil moisture retrieval is the accuracy required by the application under 

consideration and the technical capability of retrieval by sensor and algorithms. For agricultural 

applications, the distinction of five wetness states over a 25% soil moisture dynamic range would 

require a sensitivity of at least 0.05 m3/m3 (RMSD). From the technical maturity perspective, 0.06 

m3/m3 ubRMSD has routinely been achieved. 

3.3.3 Acquisition mode (mono -/bi -static) and local incidence angle  

Most current spaceborne radars operate in the monostatic backscattering mode. Moreover, the 

incidence angles of conventional synthetic aperture radar (SAR) and scatterometer sensors range 

between 20° to 60°. As signal strength varies with incidence angle and acquisition mode, the 

retrievals need to account for the respective angle and cannot directly be transferred to other 

acquisition modes. 

3.3.4 Spatial resolution  

The most important merit of spaceborne radar for global soil moisture retrieval is spatial resolution. 

Resolution varies from ~10 m (single-look of a SAR) to ~30 km (real aperture scatterometer). A 

SAR single-look scene is prone to large speckle noise. To reduce the speckle down to ~0.7 dB 

(desired to distinguish ~ 5 levels of wetness using ~ 4 dB dynamic range at L-band, Fig. 4 (Kim et 

al., 2012)), about 40 single-looks have to be averaged spatially, resulting in ~70 m spatial 

resolution. The resolution of spaceborne bistatic instruments varies depending on the flatness of 

the soil surface from ~0.7 km (first Fresnel zone) to 25 km (Ruf et al., 2018). 

3.3.5 Number of in situ  stations  

The analysis by Famiglietti et al. (2008) suggests that at least three in situ soil moisture readings 

are necessary to validate at 0.06 m3/m3 RMSD accuracy at 800 m spatial resolution. This 

recommendation applies to homogeneous conditions of soil roughness and texture, terrain slope, 

and vegetation within the resolution cell. For coarser resolutions and more heterogeneous 

conditions, more stations are necessary. 

3.3.6 Radiometric resolution  

The radiometric resolution highly depends on the capability of the sensor to send, receive and 

amplify the signal in the best way for soil moisture sensing. Most currently operating radar sensors 

have a radiometric resolution between 0.3ï1.0 dB after calibration (0.3 dB for co-polarization, 

SMAP (West, 2015)). For soil moisture sensing and especially global validation, it is beneficial to 

include regions with different radiometric signal characteristics (representative range of spatial 

heterogeneity in terms of land cover and soil diversity), considering that „  change due to soil 

moisture is only in the range of a few dB (e.g., ~4 dB Fig. 4 (Kim et al., 2012)). 

3.3.7 Overpass time  

The radar-based soil moisture retrieval does not require the physical temperature of soil and 

vegetation unlike the radiometer-based inversion/retrieval. Therefore, overpass time is not an 

issue from this perspective. However, Faraday rotation becomes strong at L-band in the afternoon 

near the Equator. The L-band Soil Moisture Active Passive (SMAP) mission used a numerical 
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model for the ionospheric electron content, which provided sufficient information to correct the 

rotational effect (West, 2015). 

3.3.8 Frequency and duration of temporal sampling  

The desired interval for revisit depends on the subsequent usage of the soil moisture information. 

Major application areas are meteorology, hydrology, and agriculture. For non-irrigating agricultural 

purposes, rainfall frequency and plant growth primarily determine the revisit interval requirement. 

In India and US cropland rain-fed regions, it rains between 20 to 40 days a year (Sun et al., 2006), 

which translates into an 18- to 9-day interval between rain events assuming a temporally even 

distribution. Meteorological (e.g. storms) and hydrological (e.g. floods) applications require about 

3-day revisit (Entekhabi et al., 2010), while plants may grow rapidly within 10 days, requiring a 

minimum revisit of ~ 6 days (McNairn et al., 2015). One hydrological cycle is typically one calendar 

year, while the crop growth season tends to be 3-4 months at the shortest: these intervals 

determine the duration for soil moisture observation for agricultural and meteorological 

applications. 

3.3.9 Ancillary information (vegetation, roughness, terrain slope)  

The successful retrieval of soil moisture requires rigorous correction, separation or cancellation of 

the strong effects on radar backscatter by vegetation, surface roughness, and terrain slope. 

Vegetation effects are corrected using concurrent radar data or ancillary information (Attema and 

Ulaby, 1978; Bauer-Marschallinger et al., 2019; Bousbih et al., 2017; Kim et al., 2017), or are 

assumed to be static and cancelled in retrievals based on time-series (Burgin and van Zyl, 2016; 

Ouellette et al., 2017). Polarimetric decomposition techniques extract smooth surface scattering 

by removing the other components (vegetation & surface roughness) (Jagdhuber et al., 2014). 

Surface roughness has also been estimated (Kim et al., 2017) or assumed static (Bauer-

Marschallinger et al., 2019; Burgin and van Zyl, 2016; Ouellette et al., 2017). Accordingly, 

recording such information at the validation sites is very helpful to understand, evaluate and 

improve the validity of the retrieved surface soil moisture. 

3.4 Soil moisture retrieval by optical methods  
Use of optical remote sensing in surface soil moisture (SSM) retrievals started in the mid 1970's 

(Johannsen, 1970). The available methods can be largely divided into the following groups: (1) 

single spectral analysis methods, (2) vegetation index based methods, (3) thermal infrared based 

methods, and (4) synergistic methods.  

3.4.1 Single Spectral Analysis methods  

Using laboratory based measurements, Angstrom (1925) was the first who demonstrated a 

decrease in reflectance as soil moisture increases. Jackson et al. (1976) in an early experimental 

study reported albedos of all dry soils to be two times higher than those of wet soils of the same 

soil types, with the exception of some sandy soils. Since then, various studies have also reported 

empirical relationships between single-channel reflectance and SSM (Dalal and Henry, 1986; 

Ishida et al., 1991). Such methods have generally reported reasonable SSM prediction for specific 

soil samples and experimental site conditions. Nonetheless, those methods provide only a poor 

indication of SSM because of the large variability in spectral characteristics of a soil, which is 

affected by parameters such as organic carbon, soil texture and type, topography and surface 

roughness. The impact of these factors can lead to strong deviations when applied outside the 

local calibration conditions (Wang and Qu, 2009). 
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Apart from empirical models, relationships between SSM and surface reflectance have been 

established using physically based models. For example, Lobell and Asner (2002) proposed a 

physical model and showed an exponential relationship between soil reflectance and SSM on the 

basis of an analysis of four different soils at various moisture contents. Their model was expressed 

as:  

 
(46) 

where Ὑ  is the dry soil reflectance, ὧ is a variable used to characterize the change rate induced 

by SM, ί refers to the soil saturation, and Ὢ to the saturation rate.  

However, even if these empirically-based approaches have generally been proven adequate for 

estimating SSM under conditions close to those used for calibration, serious issues frequently 

emerge when they are applied outside these conditions as the spectral characteristic of soil is 

affected by various soil attributes (such as soil moisture, organic matter, soil type) that can vary 

significantly (Soriano-Disla et al., 2014). One of the most widely used techniques is based on 

computing the relative reflectance that is then linked to surface soil moisture. This technique, using 

only one wavelength, aims to reduce the soil type effect by normalizing the reflectance by that 

observed under dry conditions over the same soil. A different approach exploits the change of 

reflectance sensitivity to moisture as a function of the wavelength for minimizing the effect of 

confounding factors, using derivatives of either reflectance or absorbance. Such methods reduce 

the effects of these confounding factors assuming that they are either constant or vary linearly 

with the wavelength over the limited spectral domain considered (Petropoulos et al., 2018). 

3.4.2 Vegetation Index Based methods  

In vegetation index based methods, the underlying principle is to develop an empirical spectral 

vegetation index to estimate the degree of vegetation moisture stress, which can be used for 

indirect estimates of soil moisture (Martinez-Fernandez et al., 2016). An example of a widely used 

vegetation index linked to estimating SSM is the so-called normalized difference water index 

(NDWI) proposed by Gao (1996). NDWI exploits spectral information acquired in the near infrared 

(NIR), 0.86 µm, and the short wave infrared (SWIR), 1.24 µm, because this part of the 

electromagnetic spectrum is sensitive to SSM content, and this index is also insensitive to the 

atmospheric conditions. The NDWI is defined as: 

 

(47) 

where ” is the reflectance.  

Wang et al. (2008) suggested using the normalized multi-band drought index (NMDI), which is 

essentially a modified version of the NDWI offering an improved sensitivity to drought monitoring. 

The NMDI uses the NIR as the base and the difference between two SWIR bands to detect soil 

and vegetation water content. NMDI is defined as:  

  

(48) 
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Recent studies have focused on exploring the use of hyperspectral sensors in SSM retrieval. 

Although hyperspectral data have generally shown promising results in SSM retrievals (Dematte 

et al., 2006; Heusinkueld et al., 2008), their usefulness needs to be further explored. Overall, it is 

generally accepted that even to date, techniques utilizing reflected spectral information from only 

the reflective part of electromagnetic radiation are not capable of accurately measuring SSM. This 

is because there are too many noise factors (e.g., organic matter, roughness, texture, plant cover), 

which eventually make the exploitation of such techniques impractical and non-viable (Moran et 

al., 2004).  

Indeed, even today a limited body of literature exists on the exploitation of VIS, NIR, SWIR and/or 

hyperspectral remote sensing observations on the retrieval of SSM due partly to the fact that soil 

reflectance measurements are strongly affected by the soil composition, physical structure, and 

observation conditions. Because of these limitations, efforts to directly relate soil reflectance to 

moisture have achieved success only when models are fitted to specific soil types in the absence 

of vegetation cover (Muller and Decamps, 2001). Nevertheless, one of the key advantages of 

reflectance-based methods is the maturity of optical remote sensing technology. In addition, such 

methods provide estimates of SSM at high spatiotemporal resolutions, as optical sensing systems 

that have generally high spatial resolution.  

3.4.3 TIR-based Methods  

Thermal infrared methods use thermal inertia, a parameter describing the ability of soil to resist 

temperature change (Cheng et al., 2006) to estimate SSM. Generally, thermal inertia estimation 

requires information on the soil heat capacity and on soil thermal conductivity, and can be 

computed as follows:  

 
(49) 

where ‗ is the soil thermal conductivity, ” is the soil bulk density, and ὅ is the soil heat capacity. 

An increase in SSM results in an increase of the thermal inertia, thus reducing the diurnal 

amplitude variations of the land surface temperature.  

Surface temperature is primarily dependent upon the thermal inertia of the soil, while the latter is 

dependent upon both the thermal conductivity and the heat capacity of the soil water content 

(Olsen et al., 2013). Consequently, a measurement of the amplitude of the diurnal temperature 

change allows development of a relationship between the temperature change and soil moisture. 

A number of studies have been proposed for this purpose. For example, (Ma and Xue, 1990) 

proposed the following relationship between thermal inertia and soil moisture:  

 

(50) 

where Ὠί is the soil density, Ὠ is the water density, and ύ is the weight percentage of soil moisture. 

However, the association between diurnal temperature and soil moisture is dependent on soil type 

and is limited to bare soil conditions to a large degree (Vandegriend et al., 1985). Therefore, 

generally it cannot be applied for large-scale soil moisture monitoring. Various (mainly empirical) 
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methods for mapping soil moisture over a given area have been suggested based on correlations 

of SSM with radiometric satellite measurements in both visible and thermal bands (Friedl and 

Davis, 1994; Price, 1990). However, such methods are accompanied by all the limitations of 

empirically-derived methodologies discussed earlier as well (e.g., lack of transferability to other 

regions, fine-tuning, weakness to describe physical processes, etc.). On the other hand, these 

approaches can provide estimates of SSM at high spatial resolution using mature technology in 

terms of sensor technology.  

3.4.4 Synergistic Methods  

Since the early 1980ôs, several studies have documented the presence of a triangular (or 

trapezoidal) shape when remotely sensed surface temperature (Ὕί) and vegetation index (ὠὍ) 

measurements taken from heterogeneous areas are plotted in two-dimensional feature space, 

forming a Ὕί/ὠὍ scatterplot (Petropoulos et al., 2009; Price, 1990). Many of these studies have 

focused on analyzing the biophysical properties encapsulated in the Ὕί/ὠὍ pixel envelope, and in 

associating these and the estimation of SSM as well as of other parameters that characterize land 

surface interactions. In brief, if an image is cloud free and masked for water bodies, per pixel-level 

values of Ὕί and ὠὍ collected from any satellite imagery usually form a triangular (or trapezoidal) 

shape in the Ὕί/ὠὍ feature space, as shown in Figure 5.  

 

 
Figure 5: Key descriptors and physical interpretations of the Ὕί/ὠὍ feature space ñscatterplotò (adopted from 

Petropoulos et al. 2009). 

Each yellow circle represents the measurements for a single pixel. Figure 5 shows the Ὕί/ὠὍ pixel 

envelope captured by each satellite scene. The triangular (or trapezoid) feature space is formed 

by the variability of Ὕί and its relation to vegetation with soil water content variations. The right-

hand side border of the triangle (or trapezoid) (the so-called ñdry edgeò or ñwarm edgeò) shown in 

Figure 5 is defined by the locus of points of highest temperature. This locus, however, contains 

points with differing amounts of bare soil and vegetation and represents limited SSM. Likewise, 

the wet edge at the left hand border corresponds to low temperature pixels with maximum surface 

soil water content. Points within the triangular space correspond to pixels with varying vegetation 

index (i.e., fractional vegetation cover, Ὂὶ) and surface soil water content, between those with bare 
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soil and those with dense vegetation. The relatively narrow vertex of the triangular envelope 

expresses the comparatively lesser sensitivity of leaf (i.e. vegetation) temperature to changes in 

soil water content, while the much wider base indicates that surface soil temperature is much more 

influenced by such changes.  

The potential of relating SSM with a ὠὍ and Ὕί has been thoroughly scrutinized since the early 

1980ôs. Carlson et al. (1981) were the first who found the existence of a marked relation in a Ὕί/ὠὍ 

scatterplot between soil moisture, evapotranspiration and vegetation cover (for a review see 

Petropoulos et al., 2009; Petropoulos et al., 2013).  

Various studies have been conducted attempting to relate the satellite-derived Ὕί/ὠὍ feature space 

to drought conditions, and thus indirectly to SSM distribution. A large number of those studies 

have as their basis the estimation of spectral indices which allows combining information from 

both the reflected and TIR parts of electromagnetic radiation (Carlson and Petropoulos, 2019; 

Ghulam et al., 2007; Sandholt et al., 2002; Wan et al., 2004). A different group of approaches to 

the estimation of surface soil moisture content from Ὕί/ὠὍ feature space measurements has been 

based on the coupling of these data with a Soil Vegetation Atmosphere Transfer (SVAT) model. 

In this method, the estimated soil water content is obtained from a parameter called the ómoisture 

availability (ὓ)ô, a parameter loosely equated with the fraction of field capacity for the SSM. In the 

beginning of the 1990ôs, Carlson et al. proposed a method that provided estimates of surface 

energy fluxes and SSM over partially vegetated canopies with the help of a boundary layer model 

(BML) and two image products: the Ὕί/ὔὈὠὍ scatterplot and the ñarchò diagram (Coakley and 

Bretherton, 1982). The two diagrams were used to identify the asymptotic limits of the sunlit leaf 

and the sunlit bare soil temperature and also to qualitatively assess the level of noise produced 

by small variations in soil moisture and leaf shading. The SVAT was used to estimate soil surface 

and root zone water contents, given the asymptotic vegetation and bare soil temperatures, derived 

from the aforementioned diagrams. Based on this study, Gillies and Carlson (1995) introduced a 

new method for the retrieval of spatially distributed maps of ὓ . The outputs from a SVAT model 

were coupled with the Ὕί and ὠὍ (here the Ὂὶ was used as the latter is a physical quantity in terms 

of a SVAT model contrary to the NDVI) EO data via empirically-derived correlations developed 

between the relevant input (e.g. Ὂὶ, ὓ ) and output (e.g. LE, Ὕί) parameters of the physically-

derived model, parameterized for the time of satellite overpass. These correlations were then used 

with the EO values of, for example, Ὂὶ and Ὕί to retrieve ὓ  at each image pixel as follows:  

 
       (51) 

where *ὔὈὠὍ and *ὒὛὝ can be obtained by using the following relations (52) and (53): 

 
 (52) 

 
    (53) 

where, ὒὛὝ and ὔὈὠὍ are observed surface temperature and the Normalized Difference 

Vegetation Index used in the triangle model respectively, and the subscripts έ and ί stand for bare 

soil and dense vegetation, respectively. This methodôs accuracy in retrieving ὓ  was evaluated by 
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different investigators suggesting a promising ability of this technique (Capehart and Carlson, 

1997; Carlson, 2007; Gillies et al., 1997; Petropoulos et al., 2016; Wang et al., 2007). Variants of 

this method have also been proposed for downscaling SSM operational products at higher spatial 

resolutions (Piles et al., 2016; Piles et al., 2014). 

All in all, the key advantages of the methods that utilize the synergy between optical and TIR EO 

data help in development of SSM algorithms and provide missing data in real time (namely a 

vegetation index and surface temperature). In addition, these techniques incorporate all the 

advantages of both the optical and TIR methods previously reviewed (i.e., they provide fine spatial 

and temporal resolution for SSM estimation, and they employ the use of mature technology with 

broad knowledge, data easily accessible from operational satellites, long historical data). Also, 

many of these techniques are able to provide relatively satisfactory estimates of SSM over partially 

or fully-vegetated regions, conditions which limit the performance of other techniques for 

estimating soil moisture (e.g., when MW data are used, as will be discussed next). Other key 

advantages of the Ὕί/ὠὍ methods with respect to SSM estimation generally include their ability to 

be largely independent of ancillary surface and atmospheric information and their ability to better 

deal with land surface heterogeneity. In addition, many of the aforementioned synergistic methods 

require for their practical implementation a full spatial coverage or at least a very wide range of 

both VI and surface moisture within the study region, a condition that in general cannot be satisfied 

over large homogeneous areas. In our view, these are some of the main reasons that justify the 

continuous interest of the scientific community in these methods to date (Petropoulos et al., 2015). 

3.5 Current and upcoming satellite -based soil moisture products  
In this section currently operating systems as well as planned missions including sensor-specific 

soil moisture retrieval methods/characteristics are discussed. 

3.5.1 Metop Advanced Scatterom eter (ASCAT) 

The Advanced Scatterometer (ASCAT) is part of the payload of the series of Metop satellites and 

represents a real aperture radar system operating in C-band using a vertical signal polarization 

(VV) (Gelsthorpe et al., 2000). The instrument has been operating in space more than 14 years, 

starting with the launch of Metop-A on 19 October 2006. The two following satellites, Metop-B 

(launched on 17 September 2012) and Metop-C (launched 7 November 2018), have succeeded, 

at six year intervals, to ensure a continuity of services provided by Metop. The three satellites 

share the same polar orbit (817 km orbit height, 29-day repeat cycle) with an 

ascending/descending node at 9:30 p.m./a.m. local solar time. The series of Metop satellites will 

operate in unison as long as Metop-A will be available, presumably until 2022.  

ASCAT measures the normalized radar cross section (NRCS), or radar backscatter, which is the 

ratio of the received backscattered energy to that of an isotropic surface scatterer as given by the 

two-way radar equation. The instrument consists of two sets of three fan-beam antennas arranged 

in azimuth at ±45°, 90°, and 135° and ±45° broadside. The incidence angles of the two antennas 

perpendicular to the flight direction range between 25-53°, whereas the other four antennas range 

between 33-64° (Figa-Saldana et al., 2002). As a result, the measurement geometry produces 

two 550 km wide swaths located approximately 360 km to the left and right of the satellite ground 

track (Figure 6). Each point of the Earthôs surface that falls within one of the two swaths will be 

seen by all three antennas, and a so-called backscatter "triplet" (Fore, Mid and Aft beam) can be 

observed. ASCAT works in two different modes: measurement and calibration. The calibration 

mode is used during external calibration campaigns when the platform passes over three different 

ground transponders located in central Turkey (Wilson et al., 2010). 
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Despite the fact that initially no operational services were foreseen over land, ASCAT has been 

utilized to develop a global near real-time soil moisture processing and dissemination service 

(Wagner et al., 2013). Much of this success is owed to its predecessor instrument, the C-band 

scatterometer (ESCAT) on-board the European satellites ERS-1 (1991-2000) and ERS-2 (1995-

2011), which was originally used to study backscatter and soil moisture changes (Wagner et al., 

1999c). A physically-based semi-empirical change detection algorithm has been developed by 

Vienna University of Technology (TU Wien) to estimate surface soil moisture (Wagner et al., 

1999a; Wagner et al., 1999b). The similar sensor design of ESCAT and ASCAT allowed a direct 

transition of the same retrieval approach (Bartalis et al., 2007; Naeimi et al., 2009). 

 

Figure 6: The ASCAT observation strategy with two 550 km-wide swaths. Credit: ESA/EUMETSAT. 

The TU Wien soil moisture retrieval exploits the multi-incidence angle measurement capability of 

the fan-beam scatterometer. Backscatter observations are interpolated to a common reference 

incidence angle of 40° based on an empirical description of the incidence angle behavior (Wagner 

et al., 1999b). A second order Taylor polynomial is used to model the relationship between 

backscatter and incidence angle (Hahn et al., 2017). Temporal variations in this relationship are 

due to changes in the dominant scattering mechanism over time. Vegetation dynamics and soil 

state can have distinct scattering characteristics and define whether the signal contribution from 

the soil to the overall backscatter is more important than the signal contribution from the vegetation 

canopy, or vice versa (Vreugdenhil et al., 2016; Wagner et al., 2013). Considering that those two 

physical effects are able to cancel each other out at distinct incidence angles means that the 

backscatter signal becomes stable compensating for changes in vegetation dynamics. However, 

the exact incidence angle is a function of the soil moisture content because of its dependency on 

the strength of the attenuation of the soil contribution. This notion has led to the so-called "cross-

over angle concept", which defines two distinct incidence angles for dry (25°) and wet (40°) soil. 

The dry and wet backscatter references are estimated at these two incidence angles and enable 

correction for static and seasonal vegetation effects. Finally, surface soil moisture content is 
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computed by scaling the incidence-angle-normalized backscatter between the dry and wet 

backscatter references, which leads to a value between 0 (completely dry) and 1 (saturated) 

representing the quantity degree of saturation. By knowing the amount of soil porosity (m3m-3) it 

is also possible to convert degree of saturation into volumetric soil moisture content (m3m-3) 

(Wagner et al., 2013). 

ASCAT surface soil moisture products are developed and distributed in the framework of the 

"EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water 

Management (H SAF)" project. Near real-time (NRT) and Climate Data Record (CDR) products 

are based on the TU Wien soil moisture retrieval and serve the different needs of the user 

communities. While NRT soil moisture products are most current and rely on pre-computed model 

parameters, the CDR soil moisture products are required to ensure long-term consistency and are 

based on the most recent version of model parameters. The ASCAT soil moisture products are 

validated at regular intervals using in situ reference data, and are intercompared with other 

remotely sensed soil moisture products as well as land surface models (Brocca et al., 2011; Qiu 

et al., 2013; Wagner et al., 2013). 

It is planned to extend the series of C-band scatterometers with the EUMETSAT Polar System 

Second Generation (EPS-SG) programme in the near future. The space segment will consist of a 

constellation of two satellites (Sat-A and Sat-B) developed by ESA, whereas the ground segment 

will be developed and maintained by EUMETSAT. Sat-B will carry a scatterometer (SCA) 

operating at 5.355 GHz. It is expected that three pairs of satellites will ensure a total mission 

duration of 21 years starting in 2022 (Lin et al., 2017). The combination of C-band scatterometer 

observations between ESCAT, ASCAT and SCA will create a surface soil moisture data record 

covering more than 40 years into the future. 

3.5.2 Soil Moisture and Ocean Salinity (SMOS) 

SMOS was launched in November 2009 (Kerr et al., 2010b; Kerr et al., 2001) and was designed 

to acquire L-band measurements globally over all surfaces of the Earth (land, ocean, and 

cryosphere alike). In contrast to Aquarius and SMAP, the antenna technology chosen for SMOS 

was ï for the first time in space ï a two-dimensional interferometer radiometer, composed of a Y-

shape antenna of 8 m in diameter mounted on a central platform, the hub (Figure 7). The antenna 

arms and the hub host 69 individual receivers, evenly distributed, as well as three noise injection 

radiometers used to calibrate the signal from a known source. The interferometry technology used 

by SMOS has been developed for radio astronomy and provides the opportunity to measure at a 

spatial resolution suitable for the global measurements required while saving on antenna mass 

and volume. Interferometry is used to address the constraint (in space) that the antenna size is 

proportional to the wavelength and the spatial resolution achieved, hence L-band synthetic 

aperture and interferometric processing are advantageous for space applications addressing the 

Earthôs global water cycle. SMOS measures the brightness temperature (TB) emitted from the 

Earth at L-band at 1.4 GHz over a range of incidence angles (0 to 55º) across a swath of 

approximately 1000 km with a spatial resolution of 27 to 55 km and a revisit time of 1-3 days. 

SMOS has the functionality to provide measurements in full polarization, and continues in 

operation today.  

SMOS Level 1 data products consist of brightness temperatures available in near-real time (NRT), 

i.e., ~3 hours from acquisition of the measurement on orbit. Level 2 data products are retrieved 

soil moisture vegetation opacity and sea surface salinity, available approximately 6-8 hours after 

sensing. A Level 2 soil moisture product based on a neural network approach is also available in 
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near-real time (Rodriguez-Fernandez et al., 2015; Rodriguez-Fernandez et al., 2017). Higher-level 

products for both soil moisture and sea surface salinity are available from national data processing 

centers in France (CATDS Centre Aval de traitement des Données SMOS) and Spain (CP34). 

They include Root zone soil moisture and drought index, high resolution soil moisture products (1 

km), freeze thaw at high latitudes, and surface water fraction, An assessment of the missionôs 

performance can be found in (Kerr et al., 2016). 

SMOS was the first one of three instruments launched into orbit with the aim of producing global 

maps of sea surface salinity and soil moisture using the 1400-1427 MHz protected band: SMOS, 

Aquarius, and SMAP. Although this frequency band is allocated to passive measurements only, 

RFI (Radio-Frequency Interference) is present in the data of all three missions. Despite active 

emissions in the protected band being illegal, RFI is globally present. The SMOS team put in place 

several strategies to improve and mitigate the RFI situation, with substantial improvement in some 

areas (Oliva et al., 2016). 

 
Figure 7: Artistôs depiction of the SMOS satellite. Credit: CNES, ESA. 

In addition, also alternative products are available. E.g., SMOS-IC (SMOS INRAE-CESBIO 

product) is a recent and alternative SMOS product of surface soil moisture and vegetation optical 

depth at L-band (L-VOD). The product development was coordinated by INRAE Bordeaux, and 

the first version was developed in collaboration with CESBIO and KU LEUVEN (Fernandez-Moran 

et al., 2017a; Fernandez-Moran et al., 2017b). SMOS-IC corresponds to the SMOS "original 

algorithm" i.e. the two parameter inversion of the L-MEB model (Wigneron et al., 2007) that was 

proposed in the SMOS project submitted to ESA and was already described in Wigneron et al. 

(2000) and Wigneron et al. (2017). SMOS-IC is an alternative product to the official Level 2 (Kerr 

et al., 2012) and Level 3 SMOS (Kerr et al., 2016) products with the following characteristics: 

¶ Most importantly, it is independent of modelled soil moisture data and vegetation optical 

indices (LAI, NDVI). This independence makes it robust in evaluations/applications for both 

soil moisture and L-VOD by avoiding circularity. 
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¶ It is based on a much simpler algorithm by deleting complex corrections, whose full evaluation 

is very difficult and which may lead to add more noise than improvement (corrections can be 

very tricky as the SMOS footprint changes from one day to the other and for each multi-angular 

observation). 

¶ It considers the pixel as homogeneous, consistent with SMAP, ASCAT and AMSR2, and thus 

avoids the use of a decision tree which may create discontinuities in the global soil moisture 

map. 

SMOS-IC provides global gridded (EASE grid 2) daily soil moisture (m3m-3) and VOD in NetCDF 

format with a ~25 km cylindrical projection (ascending and descending overpasses at 0600 a.m. 

and 0.600 p.m. Local Solar Time, respectively). The first version V105 (processed in late 2017) is 

available as a scientific product at CATDS. A more recent version was based on a first order model 

(2-Stream instead of the ñtau-omegaò, (Li et al., 2020)) and the most recent version is a multi-orbit 

product. It is available at https://ib.remote-sensing.inrae.fr/. 

Many recent inter-comparison studies with SMAP, ASCAT, AMSR2, etc. showed that the IC 

product compares very well with the other microwave products for both soil moisture (Al-Yaari et 

al., 2019; Dong et al., 2020; Kim et al., 2020; Ma et al., 2019; Quets et al., 2019; Sadeghi et al., 

2020) and L-VOD (Rodriguez-Fernandez et al., 2018). Besides soil moisture, the SMOS-IC L-

VOD vegetation index was found to well represent the above-ground vegetation biomass (Brandt 

et al., 2018b) and SMOS-IC has been recently used in several applications for monitoring the 

water and carbon cycles in the tropical, temperate and boreal regions (Al-Yaari et al., 2020; Bastos 

et al., 2020; Bastos et al., 2018; Brandt et al., 2019; Brandt et al., 2018a; Tagesson et al., 2020; 

Tong et al., 2020; Wigneron et al., 2020). 

3.5.3 Soil Moisture Active Passive (SMAP)  

NASA launched the Soil Moisture Active Passive (SMAP) mission on January 31, 2015 (Entekhabi 

et al., 2010; Entekhabi et al., 2014). The satellite started to deliver science data products on March 

31, 2015. NASA developed the mission as a Tier 1 recommendation of the 2007 National 

Academy of Sciences Earth Science Decadal Survey (National Research Council, 2007). The 

mission built on the heritage of the canceled NASA ESSP mission called Hydros (Entekhabi et al., 

2004). The concept is based on a single large (6 m diameter) conically scanning antenna, through 

which both an L-band radiometer and radar make measurements. At an incidence angle of 40°, 

the resolution of the radiometer and the radar (in a scatterometer operation) is about 40 km (Figure 

8). The radar was designed for synthetic aperture processing with single look resolution of 250 m 

x 400 m and multi-look resolution of 1 km. On July 7, 2015, the radar ceased operations abruptly, 

but the radiometer continues nominal operations.  

The SMAP mission provides a suite of science data products including Level 1 products for 

brightness temperature and backscatter, Level 2 and Level 3 products for soil moisture and 

freeze/thaw state, and Level 4 data assimilation products for surface and root zone soil moisture 

(Reichle et al., 2019) and carbon flux (Jones et al., 2017). SMAP data are also used for routine 

generation of sea surface salinity. Originally, SMAP generated soil moisture products separately 

from its radiometer (high accuracy, coarse spatial resolution) (Chan et al., 2016) and radar 

(reduced accuracy, high spatial resolution) (Kim et al., 2017) and also produced an active-passive 

product that combined the radiometer and radar measurements for a moderate resolution soil 

moisture retrieval with enhanced accuracy (Das et al., 2018). After the radar failure, the mission 

reassessed its data product suite and started to produce the radiometer product on a finer 9 km 

grid using an optimal interpolation technique (Chan et al., 2018). The mission also decided to 
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collaborate with the Copernicus/ESA Sentinel-1 mission and started to generate a combined high-

resolution product using the SMAP L-band radiometer and the Sentinel-1 C-band backscatter data 

(Das et al., 2019). 

 

Figure 8: Artistôs depiction of the SMAP satellite. Credit: NASA. 

The SMAP radiometer-based products include different soil moisture retrievals using three 

different algorithms. The baseline algorithm uses the single channel algorithm based on the 

vertically polarized brightness temperature (SCA-V) (OôNeill et al., 2018). The two additional 

algorithms use (1) the SCA based on the horizontally polarized TB, and (2) both TB polarizations 

in a modified dual channel algorithm (MDCA). The MDCA algorithm retrieves vegetation opacity 

in addition to soil moisture. 

For determining the accuracy and improving the performance of its soil moisture products, the 

SMAP mission developed a calibration and validation plan, which employs a suite of 

complementary methodologies to achieve a robust global assessment (Jackson et al., 2014). 

These methodologies include the utilization of core validation sites (Colliander et al., 2017b), 

sparse networks (Chen et al., 2017), other satellite data products (Burgin et al., 2017; Chan et al., 

2018), model-based data products (Pan et al., 2016), and field campaigns (Colliander et al., 

2017a; Colliander et al., 2019; Ye et al., 2019). Several other initiatives have also investigated the 

performance of the SMAP soil moisture products (Chen et al., 2018b; Zhang et al., 2019) and their 

utility for various applications (Bolten and Crow, 2012). 


































































































