
WGCV-55

Land Product Validation (LPV) sub-group report

Fabrizio Niro (Serco/ESA)

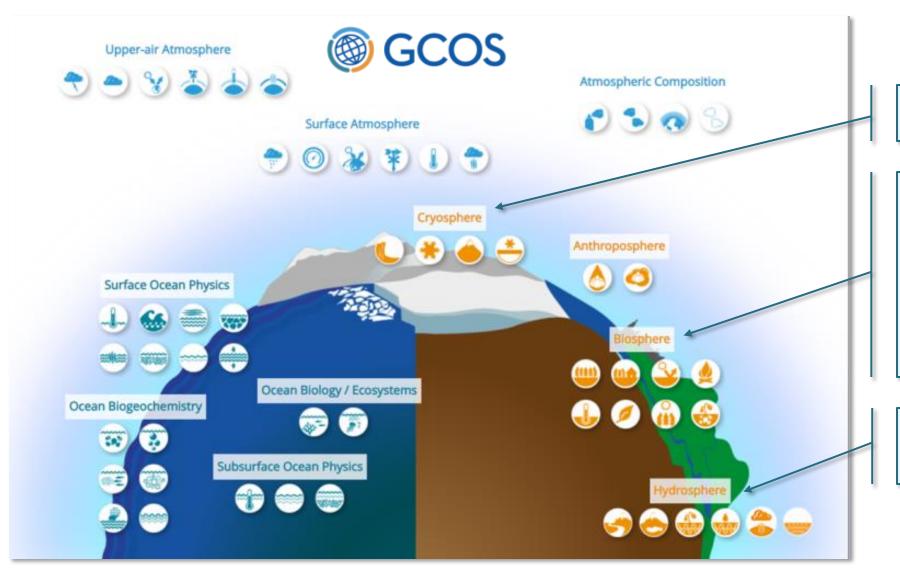
Agenda Item 2.2, WGCV-55

Hyderabad, India, 8-10 July 2025

Outline

- LPV internal structure and team
- ECVs and EBVs requirements
- LPV Validation Framework
- LPV protocols, datasets and tools
- LPV Supersites Update
- Reports from LPV Focus Areas
- Summary and Outlook

LPV Structure and Team



		Last Name	Institution	Country	End of Term
	Fabrizio	Niro	ESA	Italy	Apr 2028
Admin	Vacant				
	Jaime	Nickeson	GSFC	USA	
	Alexandra	Tyukavina	University of Maryland	USA	Mar 2027 (2nd term)
Land Cover	Nandika	Tsendbazar	Wageningen University	Netherlands	April 2027 (1st term)
	Sophie	Bontemps	Université Catholique de Louvain	Belgium	ex-officio
	Richard	Fernandes	Natural Resources Canada	Canada	Apr 2027 (one term)
Biophysical	Hao	Teng	University of Maryland	USA	April 2027 (1st term)
	Luke	Brown	University of Salford	UK	Jan 2026 (1st term)
Fire/Burn Area	Louis	Giglio	University of Maryland	USA	Sep 2026 (2nd term)
riie/buiii Aiea	Bernardo	Mota	National Physical Lab	UK	Jan 2026 (1st term)
	Zhuosen	Wang	GSFC	USA	ex-officio
Surface Rad	Angela	Erb	Leidos	USA	Jan 2026 (1st term)
	Jorge	Sanchez-Zapero	EOLab	Spain	Jan 2026 (1st term)
Soil Moisture	John	Bolten	NASA GSFC	USA	Apr 2026 (2nd term)
Son worsture	Alexander	Gruber	TU Wien	Austria	Oct 2026 (1st term)
LST	Thomas	Holmes	NASA/GSFC	USA	Dec 2028 (1st term)
LSI	Lluis	Perez Planells	Karlsruhe Institute of Technology	Germany	Sept 2026 (1st term)
Dhanalanı	Joshua	Gray	North Carolina State University	USA	Jan 2025 (2nd term)
Phenology	Victor	Rodríguez-Galiano	University of Seville	Spain	Aug 2025 (2nd term)
Snow Cover	Carrie	Vuyovich	NASA GSFC	USA	Jan 2026 (1st term)
Show Cover	Juha	Lemmetyinen	Finnish Meteorologial Inst.	Finland	Sep 2026 (1st term)
	Tomoaki	Miura	University of Hawai'i	USA	ex-officio
Veg Index	Simon	Kraatz	USDA	USA	Apr 2027 (1st term)
_	Vacant				,
	Laura	Duncanson	UMD/GSFC	USA	ex-officio
Biomass	Kim	Calders	Ghent University	Belgium	Feb 2026 (1st term)
	Neha	Hunka	ESA/ESRIN	Italy	Feb 2026 (1st term)
ЕТ	Yun	Yang	Cornell University	USA	Jan 2027 (1st term)
ET	Carmelo	Cammalleri	Politecnico di Milano	Italy	Jan 2027 (1st term)
	Arthur	Endsley	University of Montana	USA	Sept 2027 (1st term)
GPP/NPP	Álvaro	Moreno	University of Valencia	Spain	Nov 2027 (1st term)

New
ex-officio
end of term
approaching
Vacant or beyond
end of term

ECVs addressed by LPV

• Snow (SCE, SWE)

- Biomass (AGB)
- Albedo
- Fire (FRP, BA)
- fAPAR
- Land Cover
- LST
- Leaf Area Index

- Land Evaporation
- Soil Moisture

Biodiversity metrics covered by LPV

PERSPECTIVE

Priority list of biodiversity metrics to observe from space

Andrew K. Skidmore ^{1,2} M, Nicholas C. Coops ^{1,2}, Elnaz Neinavaz ^{1,4}, Abebe Ali^{1,4}, Michael E. Schaepman [®] , Marc Paganini⁶, W. Daniel Kissling [®] , Petteri Vihervaara [®] , Roshanak Darvishzadeh 91, Hannes Feilhauer 910, Miguel Fernandez 11,12, Néstor Fernández 11,14, Néstor Fernández Noel Gorelick 15, Ilse Geijzendorffer 4, Uta Heiden 17, Marco Heurich 18,19, Donald Hobern 20, Stefanie Holzwarth 17, Frank E. Muller-Karger 12, Ruben Van De Kerchove2, Angela Lausch 12,24 Pedro J. Leitão © 25,26, Marcelle C. Lock © 1,2, Caspar A. Mücher 27, Brian O'Connor 28, Duccio Rocchini © 29,30, Woody Turner 31, Jan Kees Vis 32, Tiejun Wang © 1, Martin Wegmann © 33 and Vladimir Wingate³⁴

EBV class	Candidate EBV	Example remote sensing biodiversity product
Genetic composition	Allelic diversity	This EBV class is not measurable from space
Species populations	Species distribution	Tropical tree species distribution
Species traits	Morphology	Vegetation canopy height
Community composition	Taxonomic/ phylogenetic diversity	Functional composition of temperate forest
Ecosystem structure	Live cover fraction	Land cover
Ecosystem function	Primary productivity	Fraction of absorbed photosynthetically active radiation

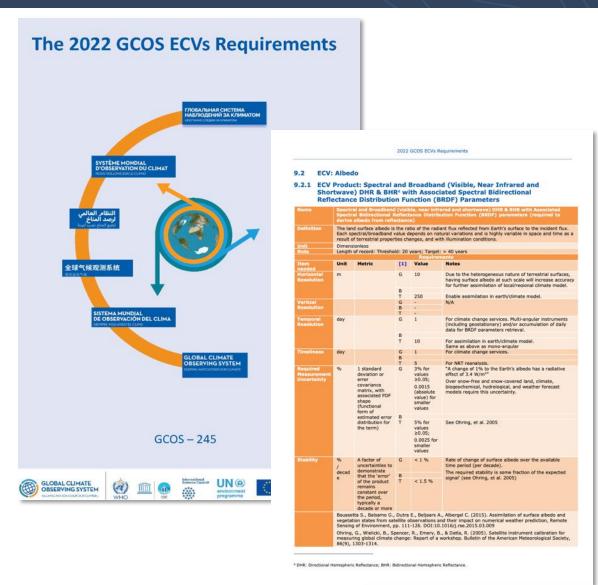
Skidmore et al 2021, Nature ecology and evolution

PERS	PECTIVE		NATURE EC	OLOGY & E	VOLUTIO			
Table 2 The 30 remote sensing biodiversity products with the highest rankings								
Number	Remote sensing biodiversity product	Remote sensing-enabled biodiversity variable	EBV class	Rank within EBV class	Rank across a EBV classes			
1	Biological effects of fire disturbance	Ecosystem disturbance	Ecosystem function	1	1			
	(direction, duration, abruptness, magnitude, extent and frequency)	Habitat structure	Ecosystem structure	1	1			
2	Biological effects of irregular	Ecosystem disturbance	Ecosystem function	1	1			
	inundation	Habitat structure	Ecosystem structure	1	1			
3	LAI	Ecosystem physiology	Ecosystem function	3	5			
		Habitat structure	Ecosystem structure	3	5			
		Species physiology	Species traits	1	21			
4	Land cover (vegetation type)	Habitat structure	Ecosystem structure	3	5			
5	Ice cover habitat	Habitat structure	Ecosystem structure	5	8			
6	Above-ground biomass	Habitat structure	Ecosystem structure	6	9			
7	Foliar N/P/K content	Ecosystem physiology	Ecosystem function	4	9			
		Species physiology	Species traits	2	28			
8	Net primary productivity	Ecosystem physiology	Ecosystem function	5	11			
		Species physiology	Species traits	2	28			
9	Gross primary productivity	Ecosystem physiology	Ecosystem function	5	11			
		Species physiology	Species traits	2	28			
10	Fraction of absorbed photosynthetically active radiation	Ecosystem physiology	Ecosystem function	5	11			
11	Ecosystem fragmentation	Spatial configuration	Ecosystem structure	7	11			
12	Ecosystem structural variance	Spatial configuration	Ecosystem structure	7	11			
13	Urban habitat	Habitat structure	Ecosystem structure	7	11			
14	Vegetation height	Habitat structure	Ecosystem structure	7	11			
15	Plant area index profile (canopy cover)	Habitat structure	Ecosystem structure	7	11			
16	Habitat structure	Habitat structure	Ecosystem structure	7	11			
17	Fraction of vegetation cover	Habitat structure	Ecosystem structure	7	11			
18	Specific leaf area	Ecosystem physiology	Ecosystem function	8	22			
		Species morphology	Species traits	2	28			
19	Chlorophyll content and flux	Ecosystem physiology	Ecosystem function	8	22			
		Species physiology	Species traits	2	28			
20	Land surface peak (maximum of season)	Ecosystem phenology	Ecosystem function	8	22			
	Land surface green-up (start of season)	Ecosystem phenology	Ecosystem function	8	22			
	Land surface senescence (end of season)	Ecosystem phenology	Ecosystem function	8	22			
21	Carbon cycle (above-ground biomass)	Ecosystem physiology	Ecosystem function	8	22			
22	Peak season (maximum of season)	Species phenology	Species traits	2	28			
23	Green-up (start of season)	Species phenology	Species traits	2	28			
24	Senescence (end of season)	Species phenology	Species traits	2	28			
25	Leaf dry matter content	Species morphology	Species traits	2	28			
26	Ecosystem soil moisture	Ecosystem physiology	Ecosystem function	14	28			
27	Functional diversity	Community diversity	Community composition	1	38			
28	Species abundance	Population abundance	Species population	1	46			
29	Relative species abundance	Population abundance	Species population	1	46			
30	Population density	Population structure by age/size	Species population	1	46			

Land Cover

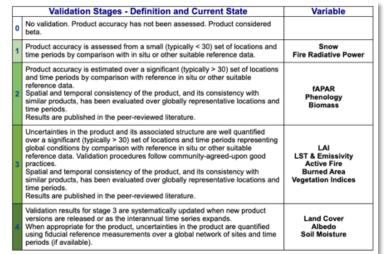
Leaf Area Index Soil Moisture

Phenology

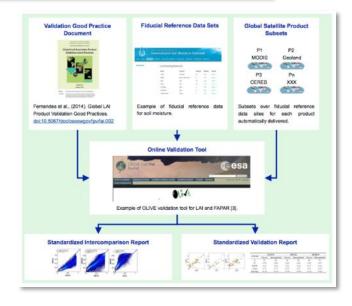

Net Primary Production

Gross Primary Production

ECVs and EBVs requirements

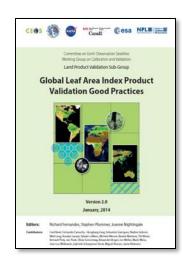

- GCOS ECVs requirements, e.g., temporal and spatial resolution, stability and uncertainty
- More stringent requirements in2022 edition for several ECVs
- These are the main drivers for developing LPV protocols
- No mature requirements yet for biodiversity metrics, work is ongoing to fill this gap

LPV Validation Framework

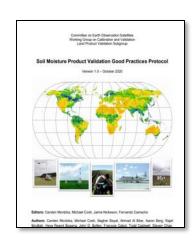


- ❖ LPV maturity concept / framework to ensure common approaches to the validation of terrestrial ECVs
- LPV framework basic elements:
 - Fiducial Reference Data
 - Validation Good Practices
 - Reference satellite products
 - On-line validation tools
- Availability of on-line validation tool prerequisite to reach Stage "4"

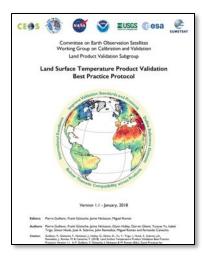
Bayat et al. 2020



LPV Protocols



- ❖ LC protocol being finalised to be endorsed at WGCV / CEOS level!
- LAI protocol review: adding fCover, fAPAR, higher resolution data (<100m), RSE paper</p>
- First draft VI protocol


Summary - Annual Downloads								
Year	AGB	SM	Albedo	LST	LAI*			
2016					53			
2017				17	58			
2018				104	142			
2019			126	79	95			
2020		102	122	106	134			
2021	445	126	90	81	129			
2022	188	55	48	52	93			
2023	239	77	60	79	104			
2024	328	69	58	105	136			
2025^	92	49	13	21	24			
Totals	968							
*LAI missing								

2014 - LAI

2020 - SM

2018 - LST

2021 - AGB

2019 - Albedo

LPV Datasets and Tools

- ❖ Available in Cal/Val portal:
 - LPV Direct 2.1 dataset for LAI,
 fAPAR, fCover coarse resolution
 - SALVAL Tool for broadband albedo coarse resolution using ground-based data and reference satellite products
 - OLIVE Tool for LAI/fAPAR outdated, long-standing open action → ESA project to update this tool, start 2026 (TBC)

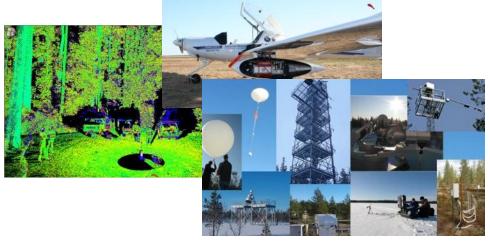
LPV communications

- Annual Newsletters (email)
- Quarterly telecons (Web)
- Yearly tag up meetings with each FA (VI/Phenology and ET already done)
- Up-to-date Web / list of products / key references
- Workshops or special sessions per variable (every 2-3 years)
- Plenary LPV meeting (every 1 or 2 years)

https://lpvs.gsfc.nasa.gov/

LPV Plenary 2025

- Half-day LPV plenary organised during the LPS25 week
- Reports from all FA leads covering all variables
- Large number of input and recommendations gathered
- ❖ Basis for LPV Action Plan for the 2025-28 period
- Content in this presentation extracted from the plenary

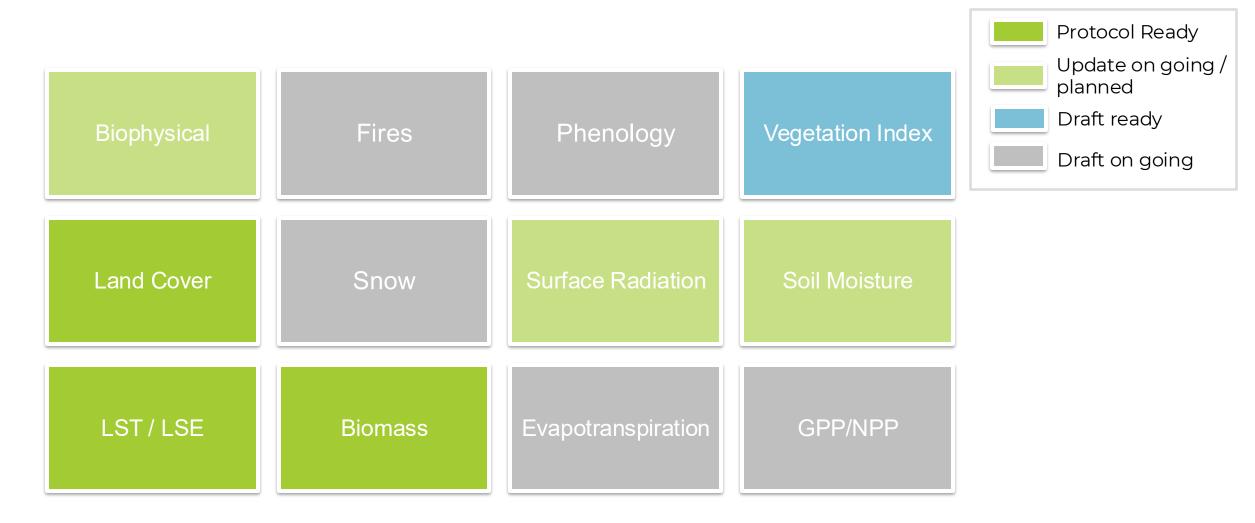


LPV Supersites

- ❖ In **2016**, LPV **supersites** (55) defined to address CEOS CV-12 action :
 - Well characterised site canopy structure for RTM-based validation
 - Useful for validating at least 3 ECVs
 - Long term operations, part of established networks (e.g., ICOS, NEON, TERN)
 - Community-agreed protocols
 - Ideally supported by airborne / Lidar
- Since 2016, landscape evolved:
 - New sites/networks, new variables, advanced sensors (UAV), new missions

LPV Supersites update

- Review definition
 - Expand variables: SR, ET, GPP/NPP, SIF
 - For validation of at least 3 FA groups
 - Assess spatial representativeness
 - Adherence (ideal) to CEOS-FRM concept
 - Adding UAV-LiDAR as ideal component
- ❖ Sites selection (220+ candidate)
 - Review ecosystem **networks** for recent protocol updates (e.g., ICOS fAPAR)
 - Include recent networks /sites
 - Ranking: ancillary data, priority to undersampled biomes/regions
 - List (Q4 2025) for WGCV endorsement



FA status report

Biophysical

- ❖ LAI 2014 protocol revision
 - More stringent GCOS requirements
 - Add new variable: FCover, fAPAR
 - High-resolution products (<100 m)
 - Focus on uncertainty (FRM4VEG)
 - Technological advances (automated sensors, UAV-based)
- Status of protocol update
 - RSE paper (draft) as initial step
 - First call to community gathering sent

9.8 ECV: Leaf Area Index

9.8.1 ECV Product: Leaf Area Index (LAI)

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

rate set:
railue corresponds to the climative a better phenology

ns modeling, or Land Surface

Not just a pretty picture: Mapping Leaf Area Index at 10 m resolution using

Richard Fernandes ", Gang Hong , Luke A. Brown , Jadu Dash , Kate Harvey , Simha Kalimipalli , Camryn MacDougall , Courtney Meier , Harry Morris , Hemit Shah , Abhay Sharma , Lixin Sun

Fernandes et al. 2025

fiducial reference measurements for vegetation Upscaling uncertainties

Sampling and measurement condition undertainties

Peld instrument and calibration uncertainties

Biophysical

GROUNDED EO database

- 81 NEON, ICOS & TERN sites (2013-2022)
- > 16,000 FRM (LAI, FAPAR, FCOVER)
- Provided at **ESU** scale (10 m to 100 m)
- Uncertainties following FRM4VEG
- Available on Zenodo, Cal/Val portal

Recent updates

- ICOS LAI/fAPAR protocols being updated align to FRM4VEG and LPV protocols
- Tackling long standing action: improving use of ICOS for Cal/Val (NUBICOS EU)

Fires

- ❖ Gaps / challenges (BA, AF, FRP)
 - Lack of community protocols
 - Focus on higher resolution (<100m)
 - Lack of uncertainties / traceability (BA)
 - Ephemerality of the phenomenon (FRP):
 challenges in spatiotemporal comparison
 - Scarcity of field campaigns data
- Yet, growing interest
 - Emerging commercial data providers
 - Relevance for **biodiversity** monitoring, climate adaptation and mitigation

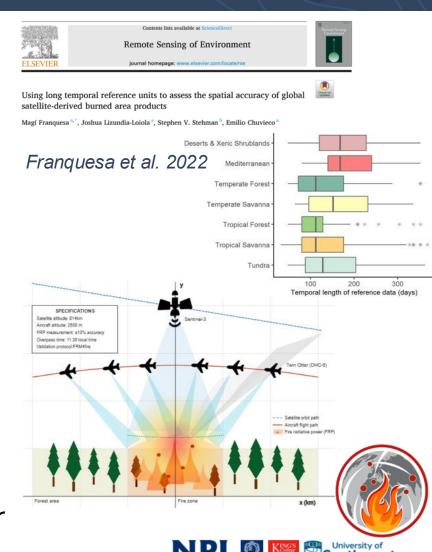
	Validation Stages - Definition and Current State	Variable
0	No validation. Product accuracy has not been assessed. Product considered beta.	1,1111
1	Product accuracy is assessed from a small (typically < 30) set of locations and time periods by comparison with in situ or other suitable reference data.	Snow Fire Radiative Power
2	Product accuracy is estimated over a significant (typically > 30) set of locations and time periods by comparison with reference in situ or other suitable reference data. Spatial and temporal consistency of the product, and its consistency with smilar products, has been evaluated over globally representative locations and time periods. Results are published in the peer-reviewed literature.	fAPAR Phenology Biomass
3	Uncertainties in the product and its associated structure are well quantified over a significant (typically > 30) set of locations and time periods representing global conditions by comparison with reference in situ or other suitable reference data. Validation procedures follow community-agreed-upon good practices. Spatial and temporal consistency of the product, and its consistency with similar products, has been evaluated over globally representative locations and time periods. Results are published in the peer-reviewed literature.	LAI LST & Emissivity Active Fire Burned Area Vegetation Indices
4	Validation results for stage 3 are systematically updated when new product versions are released or as the interannual time series expands. When appropriate for the product, uncertainties in the product are quantified using fiducial reference measurements over a global network of sites and time periods (if available).	Land Cover Albedo Soil Moisture

9.4.1 ECV Product: Burned Area

	Burned area is described by a grid where each cell is labelled as burnt if the majority of that cell is classified as containing burned vegetation.									
Definition										
Unit	m²	m²								
Note										
				Requi	irements					
	Unit	Metric	[1]	Valu	Derivation and References and Standards					
Horizontal Resolution	m	Minimum mapping unit to which the BA product refers	G	10	10 m goal reflects the need to better map small and spatially fragmented burned areas that cannot be resolved at lower spatial resolution & reflects the spatial resolution provided by recent (Sentinel-2) and planned (Landsat Next; global coverage EO missions.					
			В	100	Products based on higher resolution have shown higher sensitivity to small fires, even though coarse resolution RS products still miss most small fires (Chuvieco et al. 2022)					
			Т	1000	1000 m threshold reflects experience using heritage AVHRI ACC data. Burned area products can be aggregated to lowe spatial resolution (e.g. 0.25 degree grid cells) for climate modeliers work at coarse resolution grids, 0.25 d is the most common. A recent review of users of 15 Ba products show that most of cci. org/sites/default/files/Fire. cci. b1.1. URD. v6.2 pdf. updated by Hell 2019). A review of users of 15 Ba products can be found in Mouillot et al. 2014 and Chuvieco et al. 2019.					
Vertical			G	*	N/A					
Resolution			В							
			T							
Temporal Resolution	period to which the BA	temporal period to	G	1	Mostly for atmospheric modelers. A questionnaire to atmospheric and carbon modelers done in 2011 suggested 1-2 days (https://www.esa-fire-cci.org/sites/default/files/Fire_cci_01.1_URD_v5.2.pdf, but it was recently updated to 1 day or even 6 hours: Hell 2019					
			В	10	Based on a questionnaire to atmospheric and carbon modelers done in 2011:					
				https://www.esa-fire- cci.org/sites/default/files/Fire_cci_D1.1_URD_v5.2.pdf, updated in Hell 2019						

WGCV55, 8-11 July 2025

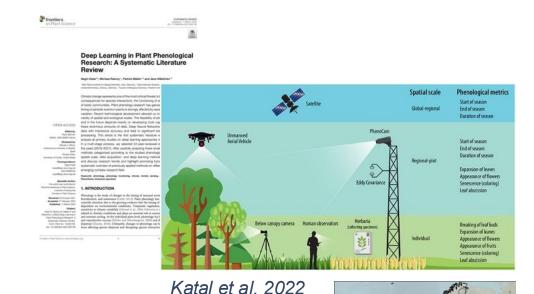
Fires



⇔ BA

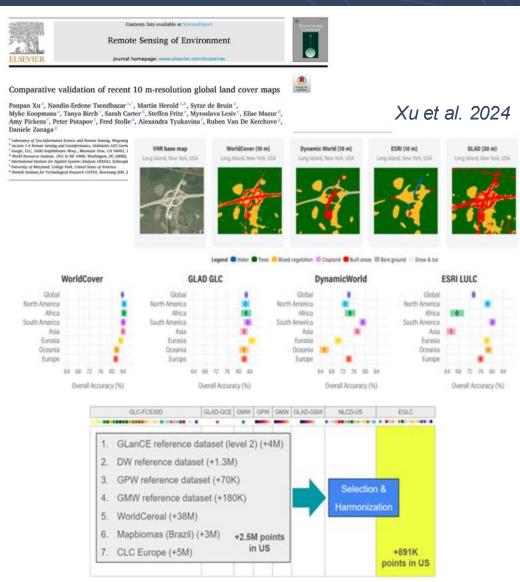
- Draft being prepared (Q4 2025)
- Still some disagreement for sample sizes, metrics and collocation criteria
- Final discussion at upcoming GOFC

♦ FRP


- Relying on airborne campaigns: limit to stage 2 (< 30 sites): review LPV stage?
- FRP airborne Vs satellite comparison challenge: temporal and spatial scale
- FRM4Fire traceability chain/uncertainty for FRP → Protocol draft (2026)

Phenology and VI

- LSP protocol being drafted
 - Large variety of Cal/Val sources different spatiotemporal scale
 - Emerging use of **UAV**: review paper being prepared
 - Focus on **HR**, Copernicus HR-VPP Phenology products (10m)
 - Ground-based networks (PhenoCam, national networks, Flux Towers)
- ❖ VI draft protocol under revision, Q4 2025 for release



Land Cover

- Status and Challenges
 - Ever increasing number of HR maps
 - Accuracy estimate not comparable
 - HR not always more spatial details
 - Accuracy vary per continent
- Way forward
 - Ensemble validation datasets to ease comparability
 - Need community protocol for producers, users, and agencies

Land Cover

LC Protocol

- V0.1 comments from 12 reviewers: Europe (6), USA (4), China (1), Brazil (1)
- Overall feedback overwhelmingly **positive**, strong interest
- New sections on Definitions, GCOS requirements and **FRM** concept
- V1.0 Q3 2025 for endorsement at WGCV and CEOS level
- Reference guidelines for current and upcoming new HR LC maps

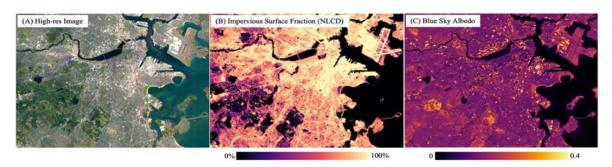
Committee on Earth Observation Satellites Working Group on Calibration and Validation Land Product Validation Subgroup Land Cover Focus Area

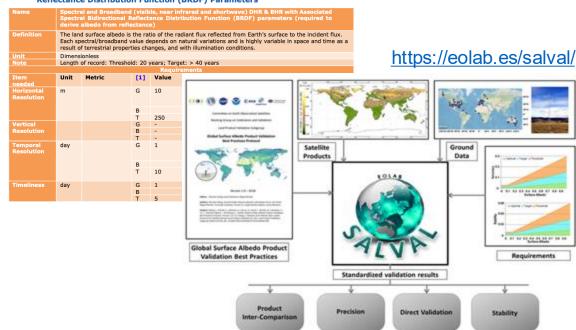
Land Cover and Change Map Accuracy Assessment and Area Estimation Good Practices Protocol

Version 0.1 - 2024

Editors: Alexandra Tyukavina, Sophie Bontemps, Giles Foody, Stephen V. Stehman, Anna

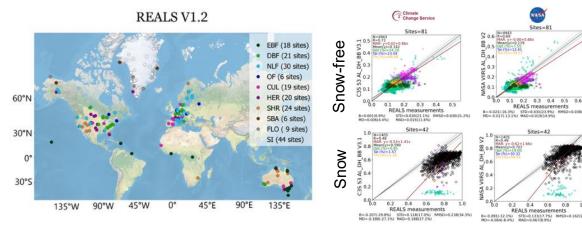
Chapter leads: Alexandra Tyukavina (Chapters 1 - 5), Sophie Bontemps (Chapters 1, 2, Appendix), Pontus Olofsson (Chapters 3, 5), Giles Foody and Julien Radoux (Chapter 4), Linda

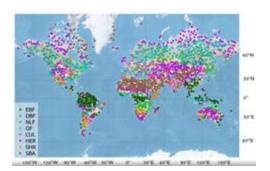



Surface Radiation

- Emerging focus on HR data (<100m) for urban climate</p>
- GCOS 2022 updates
 - Higher spatiotemporal resolution
 - Added BRDF parameters, spectral albedo (DHR, BHR)
- Status within LPV
 - Existing protocol / tool focus on coarse resolution broadband using tower-based + intercomparison
 - Need practices / reference for BRDF and spectral albedo validation

- 9.2 ECV: Albedo
- 9.2.1 ECV Product: Spectral and Broadband (Visible, Near Infrared and Shortwave) DHR & BHR¹ with Associated Spectral Bidirectional Reflectance Distribution Function (BRDF) Parameters

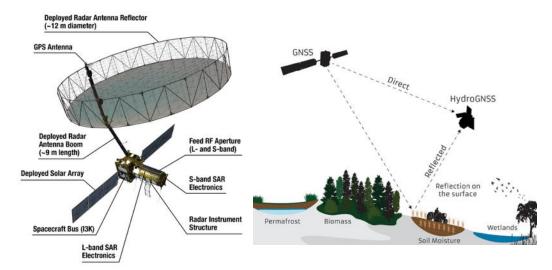

Surface Radiation



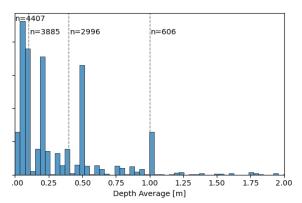
- Update of protocol:
 - Response to GCOS updates
 - Best practices for BRDF and spectral albedo validation
 - Finalize Global **Downward** Radiation Protocol (draft)
- ❖ SALVAL tool update
 - Annual maintenance
 - Expand REALS tower-based data from 99 to ~200 sites
 - Improve sampling LANDVAL V2

Representativeness-Evaluated ALbedo Stations (REALS)

A unique high quality-controlled sub-set of **in situ measurements** selected from tower-based stations (e.g., FLUXNET, BSRN, SURFRAD) that meet the CEOS LPV validation protocol (including spatial representativeness). Recent inclusion of PROMICE **snow/ice** sites in Greenland.


LANDVAL V2

Improve sampling scheme from LANDVAL VI to V2 global sampling for product intercomparison → from 720 to 2000 sites


Soil Moisture

- Emerging focus on HR (<1km)</p>
 - New technology (GNSS-R) and new missions (NISAR, CIMR)
 - Downscaling and ML approaches
- ❖ New interest for **root-zone** SM
 - Crucial for agriculture, drought monitoring, hydrology
 - Satellites provide surface SM need models for RZSM
 - Reference data (ISMN) vertical resolution ill defined

ISMN measuring depths

https://ismn.earth/en/

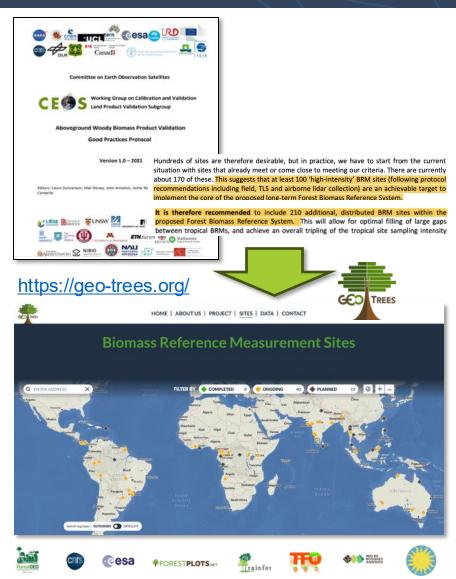
Soil Moisture

- Need to update protocols, reference data and tool:
 - Maintain and improve ISMN database and QA4SM tool
 - Address the need for higher spatial resolution products
 - Address the needs for RZSM validation
 - Assess adherence to CEOS-FRM as part of ESA FRM4SM
 - Aiming at first release in 2026

LST / LSE

Contribute to TIRCalNet

- Towards operational RadCalNet-like network for TOA radiance validation
- Cooperation ESA, CNES, JPL, Uni. Leicester, KIT, RAL
- Define instrument / algorithms, characterise uncertainties
- Radiometers installed at La Crau to perform initial testing
- **Emissivity** estimation remain primary source of uncertainty
- In-situ comparison of TIR radiometers
 (JPL and KIT) at lake Costance



Biomass

- ❖ GEO-TREES: a Global Forest Biomass Reference System
 - Stems from recommendations from the LPV AGB protocol
 - Global coverage with highest sampling in the critical carbon-rich tropics
 - Open data policy and long-term commitment
- Long-term vision
 - 100 core sites (60 Tropical, 40 Temperate)
 - 200 supplementary, lower-cost sites

Biomass

- ❖ Multi-scale approach
 - High-quality AGB at 0.25 ha plot scale with local allometric model
 - Survey at 3 ha scale using TLS
 - Airborne Laser Scanning of canopy height covering 100+ ha per site
- GEO-TREES looking forward
 - Secure **resources** to reach the longterm vision of BRM sites (100 / 200)
 - Build links across disciplines for forest, biodiversity monitoring

Evapotranspiration

- Status and challenges (New FA)
 - Relevance for applications:
 agriculture, water management, ...
 - Growing number of ET products (institutional / commercial)
 - Large variety of models / input data (e.g., satellite, meteorological)
 - GCOS definition slightly differs from ET used in RS community
 - Need consensus on definition, models, validation practices

Evaporation from Land

ECV Products and Requirements

These products and requirements reflect the Implementation Plan 2022 (GCOS-244).

Products			Sensible Heat Flux	Latent Heat Flux	Bare Soil Evaporation	Interception Loss	Transpiration
	(*)	Unit	Values	Values	Values	Values	Values
Horizontal	G	km	1	0.1	0.1	0.1	0.1
Resolution	В		-	1	1	1	1
	Т		25	25	25	25	25
Vertical	G						
Resolution	В			-	-	-	-
	Т			-	-	-	-
Temporal	G	h	1	1	1	1	1
Resolution	В			6	6	6	6
	Т		24	24	24	24	24

https://etdata.org/

Evapotranspiration

- Way forward
 - Review existing **products**, group them: models, input data, coverage
 - Review of existing Cal/Val practices
 - Identify data and knowledge gaps
 - Gather community in conferences / meeting (AGU24/ EGU25)
 - Draft protocol outline (Q3 2025) and ask feedback
 - Convene a WS by end of 2025

John M. Volk ® 123, Justin L. Huntington¹, Forrest S. Melton^{2,3}, Rich Martha Anderson⁵, Joshua B. Fisher ® 6, Ayse Kilic⁷, Anderson Ruhh

Gabriel B. Senay⁹, Blake Minor¹, Charles Morton¹, Thomas Ott¹, Lee Bruno Comini de Andrade⁸, Will Carrara^{2,3}, Conor T. Doherty²,

Christian Dunkerly 61, MacKenzie Friedrichs 610, Alberto Guzm

Christopher Hain¹¹, Gregory Halverson¹², Yanghui Kang ^{© 13}, Kyle N Leonardo Laipelt⁸, Samuel Ortega-Salazar⁷, Christopher Pearson¹ Gabriel E. L. Parrish¹⁵, Adam Purdy^{2,3}, Peter ReVelle⁷, Tianxin Wang [©]

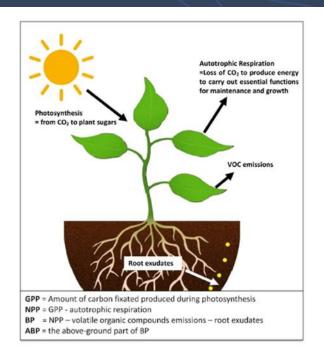
Month See of the de

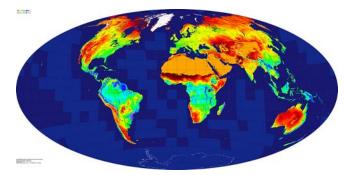
WGCV55, 8-11 July 2025 Volk et al., 2024 Slide 30

Received: 21 June 2023

Check for updates

Accepted: 30 November 2023


Published online: 15 January 2024


Volk et al. 2024

GPP/NPP

- Status and challenges (new FA)
 - Not yet ECV, though identified as part of **biodiversity** metrics
 - Growing interest and availability of GPP/NPP satellite products
 - Variety of models, inconsistencies across products
- Way forward
 - Review of existing models/products
 - Gather the community (FluxNET)
 - Propose protocol outline
 - Discuss in a dedicated WS

NASA Global VIIRS 500m GPP/NPP for terrestrial ecosystems

Summary

Highlights

- LC protocol being issued: very positive feedback from community
- Review of LPV Supersites definition and list
- Updates of protocols on-going: Biophysical, Albedo, SM
- Strong interest in the upcoming ET and GPP/NPP protocol filling a well recognised data / knowledge gap

Way forward

- Compile Action Plan for next 3 years
- Work towards filling long-standing gaps: OLIVE, ICOS for Cal/Val
- Enhance readiness to upcoming missions (hyperspectral)
- Strengthen collaboration with GEO-BON, GEO-TREES, GEO-GLAM

