The New Angular & Spectral Kernel Model for BRDF and Albedo Retrieval

Authors : Sihan Liu¹ Qiang Liu¹, Qinhuo Liu¹, Xiaowen Li^{1,2}, Qing Xiao¹, Xiaozhou Xin¹

1: State Key Laboratory of Institute of Remote Sensing Applications, CAS

2: School of geography and remote sensing science, Beijing normal university

Supported by Chinese Natural Science Foundation Project (NSFC: 40730525)

2009-03-18

Outline

Introduction

BRDF

- Bidirectional Reflectance Distribution Function
- Describe how the reflectance depends on incident & reflected angles

Albedo

- Ratio of upwilling to downwilling radiation
- Details the total shortwave energy input into the biosphere and has a key influence on surface energy budget

Introduction

Kernel-driven BRDF Model

AMBRALS

 $R(\theta_i, \theta_v, \phi, \lambda) = f_{iso}(\lambda) + f_{geo}(\lambda)k_{geo}(\theta_i, \theta_v, \phi) + f_{vol}(\lambda)k_{vol}(\theta_i, \theta_v, \phi)$

$k_{geo}(\theta_i, \theta_v, \phi)$:	geo-optical kernel
$k_{\rm vol}(\theta_i,\theta_v,\phi)$:	volumetric kernel

Incident & viewing geometry

 $f_{iso}(\lambda) f_{geo}(\lambda) f_{vol}(\lambda)$: kernel coefficients - spectral dependent

Schaaf, C., Gao, F., Strahler, A., Lucht, W., Li, X (2002). First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sensing of Environment, 83, 135-148
Strahler, A. H., Wanner, W., Schaaf, C., Li, X., et al. (1999). MODIS BRDF/albedo product: ATBD, Version 5.0, April, 1999.

Surface Radiation and Energy Budgets

ASK Model -- Model1 -- basic form

$R(\theta_i, \theta_v, \phi, \lambda) = c_0 K_0(\theta_i, \theta_v, \phi, \lambda) + c_1 K_g(\theta_i, \theta_v, \phi, \lambda) + c_2 K_v(\theta_i, \theta_v, \phi, \lambda)$

 $\kappa_0 \quad \kappa_g \quad \kappa_v$: describe lambert, geo-optical, volume scattering part c_0, c_1, c_2 : kernel coefficients related to the canopy structure

$$\begin{aligned}
 K_0(\lambda) &= \frac{\rho_g}{\pi} \\
 K_g(\theta_i, \theta_v, \phi, \lambda) &= \rho_g \cdot k_{geo}^g + \frac{2}{3} \rho_c \cdot k_{geo}^c - \rho_g + \frac{2}{3} \rho_c \\
 K_v(\theta_i, \theta_v, \phi, \lambda) &= b(\frac{2\rho_c}{3\pi^2} k_{vol}^{\rho} + \frac{2\tau_c}{3\pi^2} k_{vol}^t + \frac{\rho_c}{3\pi^-} \rho_g) \\
 C_1 &= a_1 \cdot nr^2 \\
 C_2 &= a_2 \cdot F
 \end{aligned}$$

 $\rho_{g}, \rho_{c}, \tau_{c}$: component spectra put into kernels

Snyder, W.C. , Zhengming Wan, BRDF models to predict spectral reflectance and emissivity in thethermal infrared, IEEE Transactions on Geoscience and remote Sensing, 1998

ASK Model – Advantage

 With spectral information adding into kernels, the model inversion process can make use of multi-angular and multispectral information together

 Provide a much more convenient algorithm for albedo retrieval

Surface Radiation and Energy Budgets

ASK Model -- Model 2 -- advanced form

Final Model

 $R(\theta_i, \theta_v, \phi, \lambda) = c_1 \cdot k_1(\theta_i, \theta_v, \phi, \lambda) + c_2 \cdot k_2(\theta_i, \theta_v, \phi, \lambda) + c_3 \cdot k_3(\theta_i, \theta_v, \phi, \lambda) + c_4 \cdot k_4(\theta_i, \theta_v, \phi, \lambda) + c_5 \cdot k_5(\theta_i, \theta_v, \phi, \lambda)$

$$k1 = \frac{\rho_g(\alpha_0, \lambda)}{\pi}$$

$$k2 = -\frac{k_g(\lambda) \cdot \rho_g(\alpha_0, \lambda)}{\pi}$$

$$k3 = (k_{geo}^g - 1) \cdot \rho_g(\alpha_0, \lambda) + \frac{2}{3}\rho_c \cdot (k_{geo}^c + 1)$$

$$k4 = -(k_{geo}^g - 1) \cdot k_g(\lambda) \cdot \rho_g(\alpha_0, \lambda)$$

$$k5 = (\frac{2\rho_c}{3\pi^2} k_{vol}^\rho + \frac{2\tau_c}{3\pi^2} k_{vol}^\tau + \frac{\rho_c}{3\pi} + \frac{1 - \sqrt{1 - \omega}}{\pi (1 + 2\cos(\theta_i)\sqrt{1 - \omega})}$$

$$c1 = a_1 + a_2 \cdot \exp(-bF)$$

$$c2 = (\alpha - \alpha_0) \cdot (a_1 + a_2 \cdot \exp(-bF))$$

$$c3 = a_1 \cdot nr^2$$

$$c4 = (\alpha - \alpha_0) \cdot a_1 \cdot nr^2$$

$$c5 = a_2 \cdot (1 - \exp(-bF))$$

ASK Model – Coefficients inversion

- Kernel Coefficients' Inversion
 - Derived from fitting modeled to observed BRF
 - Least-Square Solution
 - m angles & n bands
 - m*n equations \ge 5 variables
 - Advantage
 - Joint-Inversion: Coupling the Multi-spectral & Multi-angle information
 - Feasible when the angular observations is limited

ASK Model – Albedo Retrieval

Angular integration of kernels

$$h_{k}(\theta_{i},\lambda) = \frac{1}{\pi} \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \left[K_{k}(\theta_{i},\theta_{v},\psi,\lambda) \right] \sin\theta_{v} \cos\theta_{v} d\theta_{v} d\psi$$
$$H_{k}(\lambda) = 2 \int_{0}^{\frac{\pi}{2}} h_{k}(\theta_{i},\lambda) \sin\theta_{i} \cos\theta_{i} d\theta_{i}$$

$$\alpha_{b\lambda}(\theta_i) = \sum_k f_k h_k(\theta_i, \lambda)$$
$$\alpha_{w\lambda} = \sum_k f_k H_k(\lambda)$$

spectral kernel integration

spectral albedo

Spectral integration of kernels

$$\tilde{h}_{k}(\theta_{i}) = \int_{\lambda_{1}}^{\lambda_{2}} c_{\lambda} h_{k}(\theta_{i},\lambda) d\lambda$$
$$\tilde{H}_{k} = \int_{\lambda_{1}}^{\lambda_{2}} c_{\lambda} H_{k}(\lambda) d\lambda$$

$$f_k$$
 \tilde{lpha}_w

 f_k

$$\tilde{\alpha}_{b}(\theta_{i}) = \sum_{k} f_{k} \tilde{h}_{k}(\theta_{i})$$
$$\tilde{\alpha}_{w} = \sum_{k} f_{k} \tilde{H}_{k}$$

broad band kernel integration

broad band albedo

Validation

- Data description
- BRDF fitting ability
 - Fitting field-measured BRDF
 - Fitting satellite observed BRDF
- Retrieved Albedo Validation
 - Values from field measurement
 - MODIS1B & CHRIS & Field-measured Data

Validation -Data Source

- Field-measured dataset Heihe Experiment
 - during May, 2008 July, 2008
 - corn, wheat, semi-desert, bulrush
- MODIS Heihe Experiment
 - Mod43 Albedo Product
 - 16days period day153
 - Mod09 Daily Surface Reflectance Product
 - Day 146-161 16days period
 - Day 151-154 4days period
 - Modos1B Raw data
 - Atmospheric & Geometric Correction processed
 - 4days period
- CHRIS Heihe Experiment
 - 18bands * 4angles Resolution: 17.3m
 - Date: June 4th,2008

PARASOL data – Global

POLDER-3/PARASOL BRDF dataset

Validation-- Fitting field-measured BRDF

BRDF inversion -for pure pixel

Surface Radiation and Energy Budgets

Validation

Validation

- BRDF Inversion Mixed pixel
 - POLDER-3/PARASOL BRDF dataset
 - RMSE Statistic for Model Inversion --- Maximum , Median, Minimum Value

Validation - Albedo

- Albedo Validation
 - The retrievals from field-measured dataset are in good agreement
 - On-board data : difference results derived
 - Scale Mismatch
 field measurement
 on-board observation

Cover	Туре	Corn(0530))	Wheat(060)9)	Desert(00	614)	bulrush ((0626)
Data	Source	Field	Modis1B	Field	Modis1B	Field	Modis1B	Field	Modis1B
Model1	Real	0. 1690	0. 1782	0. 1582	0. 1860	0. 3226	0. 2078	0. 1468	0. 1843
Model2	Real	0. 1613	0. 1725	0. 1441	0. 1838	0. 2937	0. 1824	0. 1564	0. 1717
Weather	Station	0. 1683				0. 2493		0. 1534	
Albedome	ter	0. 1830		0. 1434		0. 2348			

Validation - Albedo

Surface Radiation and Energy Budgets

Validation - scale transform

◆ CHRIS 17.3m 58*58→MODIS (1KM)

YK-corn Site	CHRIS point	CHRIS aggregation	MODIS
WSA	0. 1515	0.1705	0. 1912
BAS	0.1487	0.1734	0.1732
real	0. 1491		0.1747
station			0.120441
albedometer			0.146565

YK-wheat Site	CHRIS point	CHRIS aggregation	MODIS
WSA	0.1691	0.1748	0.2003
BAS	0.1663	0.1739	0.1788
real	0.1667		0. 1809

Discussion

Possible error source -- Inaccurate spectra's impact

- Component spectra as driven variables are given typical values
- Different surface cover : different values should be given

Analysis based on simulation

- Random noise is added to component spectral ρ_g ρ_c τ_c
- Sensitivity index.

$$S_p = \left(\sum_{1}^{n} \frac{BRDF_{\text{var}} - BRDF_0}{BRDF_0} * 100\%\right) / r$$

 BRDF_0 inverted with the standard typical input spectral parameters BRDF_{var} random noise added

Discussion

Results

- Most numbers are below 10% with the 10%-50% noise added
- The model remains stable with inaccurate component spectra
- For global retrieval, different component spectra should be given according to the land surface type

Thank You !