

BRF/albedo inversion constrained by temporal smoothness

P. Lewis¹, T.Quaife¹, C. B. Schaaf² M. Román², Z. Wang², Y. Shuai²

 NCEO and Dept. Geography, UCL, Gower St. London WC1E 6BT, UK plewis@geog.ucl.ac.uk
 Department of Geography and Environment, Boston University, Boston, MA, USA

With grateful acknowledgement for albedo data provided by Mr. Yu, "Yucheng Experiment Station(YCES), Chinese Academy of Sciences (CAS) "

Context: Albedo from daily BRF

Linear models of BRF

- Angular normalisation
- Signal tracking
- Integrals to estimate albedo
- Operational e.g.
 MODIS, Seviri

$$\mathbf{f} = \left(\mathbf{K}^T \mathbf{C}^{-1} \mathbf{K}\right)^{-1} \mathbf{K}^T \mathbf{C}^{-1} \boldsymbol{\rho}$$

Twomey smoother

- Apply Twomey smoother
 - Solve constrained linear problem
 - Lagrange multipliers
- Closely related to
 - Tikhonov regularisation
 - Kalman smoother

Widely used in atmos. RS for profile retrieval

Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements. Dover Publications, 1996 Quaife and Lewis, submitted, TGRS, Temporal constraints on linear BRF model parameters

Twomey smoother

$$\mathbf{f}^* = \left(\mathbf{K}^{*T} \mathbf{C}^{-1} \mathbf{K}^* + \mathbf{B}^T \mathbf{\Gamma}^2 \mathbf{B}
ight)^{-1} \ \left(\mathbf{K}^{*T} \mathbf{C}^{-1} \ \boldsymbol{
ho} \ + \mathbf{B}^T \mathbf{\Gamma}^2 \mathbf{q}
ight)$$

B,**q** specifies required constraint

Bf*=q

e.g. df/dt = 0 (first order differences)

 Γ is a weighting operator, with $\Gamma^2 = \Gamma^T \Gamma$

Note eqn. similar form to Bayesian statement of problem: Think of constraint as prior (Yinhong Li et al. 2005 IGARSS)

 $f_{1,1}$

 $\mathbf{f^*}~= \left|egin{array}{c} ec{f_{1,t}} \ f_{2,1} \end{array}
ight|$

 $f_{n,t}$

Twomey smoother

$$\mathbf{f}^* = \left(\mathbf{K}^{*T} \mathbf{C}^{-1} \mathbf{K}^* + \gamma^2 \mathbf{B}^T \mathbf{B} \right)^{-1} \mathbf{K}^{*T} \mathbf{C}^{-1} \boldsymbol{\rho}$$

e.g. df/dt = 0 (first order differences)

 γ – Lagrange multiplier

confidence in assumed dynamics (e.g. no change)

Kalman smoother

issues/options with method

what constraints?

- e.g. 1st Order / 2nd Order

degree of smoothing

- $-\gamma^2$
- for multiple params?
- Constant over time?

Spain h17v04 Deciduous forest

Siberia h23v03 Deciduous forest

Agricultural site: Yucheng Experiment Station, Chinese Academy of Sciences h27v05 2004

Agricultural site: Yucheng Experiment Station, Chinese Academy of Sciences h27v05 2004

Agricultural site: Yucheng Experiment Station, Chinese Academy of Sciences h27v05 2006

Albedo comparison

Barrow 2007

MODIS band 1

National Centre for Earth Observation

Constraint-based method

- Lagrangian
- Similar in concept to Bayesian priors
- Related to DA methods
 - Kalman smoother
 - E.g. here, 'prior' is zero-order process model

Advantages:

- Framework for 'knowledge'/expectation
 - Of state or dynamics of state
- Same concepts apply spatially
- Allows for daily model parameters
 - Can operate in regions of sparse sampling

(apparent) Disadvantages:

- Needs to deal with strong step edges better
 - Hardly surprising for a smoothing algorithm
 - Same applies to moving window
- Need to make choices re what information
 - E.g. smoothness
- And how much
 - Degree of smoothness

BUT in a sense simply being explicit about this

- E.g. smoothness imposed by
 - 16-day windows
 - Temporal weighting within window
- Same concepts as in DA
 - Need data uncertainty and model uncertainty to fully specify

Where next?

- Interesting method of constraining albedo through smoothness
 - Esp. for regions of sparse sampling
 - heritage from atmospheric RS.
 - Related to DA methods
- Examine how to learn from experience of MODIS BRDF/albedo from 2000+
 - E.g. expectations of state or smoothness
- Less restrictive than current backup algorithm assumptions
 - Although that operates very well, considering …

Thanks

Spare slides

results

Comparison of MCD43 and smoother

Spain h17v04 Deciduous forest

MODIS grid

Siberia h23v03 Deciduous forest

National Centre for Earth Observation

Model inversion

- sample and assume constant over window
 - But often clouds
 - Lack of samples
 - ill-posed
 - strategies
 - 'backup'
 - e.g. magnitude inversion
 - Extend compositing period
 - Moving window

Global mean % of compositing periods over year where $p(n_{obs} \ge 7) \ge 0.9$

The Global Impact of Clouds on the Production of MODIS Bidirectional Reflectance Model-Based Composites for Terrestrial Monitoring D. P. Roy, P. Lewis, C. B. Schaf, S. Devadiga, and L. Boschetti

Barrow 2007

X

National Centre for Earth Observation

Hmmm... barrow ...

