Towards an operational production of surface albedo in the GMES Land Monitoring Core Service

F. Camacho⁽¹⁾, R. Lacaze⁽²⁾, I. Trigo ⁽³⁾, P. Viterbo⁽³⁾

(1) EOLAB, (2) HYGEOS, (3) Portuguese Meteorological Institute (IM)

Context

- Global Monitoring for Environment and Security (GMES)
- Land Monitoring Core Service (LMCS)

■ The Geoland-2 project

- Figures and facts
- Functional view

BioPar Core Mapping Service

- Structure
- Objectives
- Portfolio

BioPar albedo products

- GEO Albedo
- VGT Albedo

Quality Assessment Plan

- Inter-comparison
- Direct Validation

Summary

Global environment under pressure ...

e.g. man-made and climate induced changes in Europe

Water – 20% of all surface water sources seriously threatened by pollution

Soil Erosion – 17% of total European land area affected, economic loss around 85 €per ha

Biodiversity – 335 species highly endangered in Europe

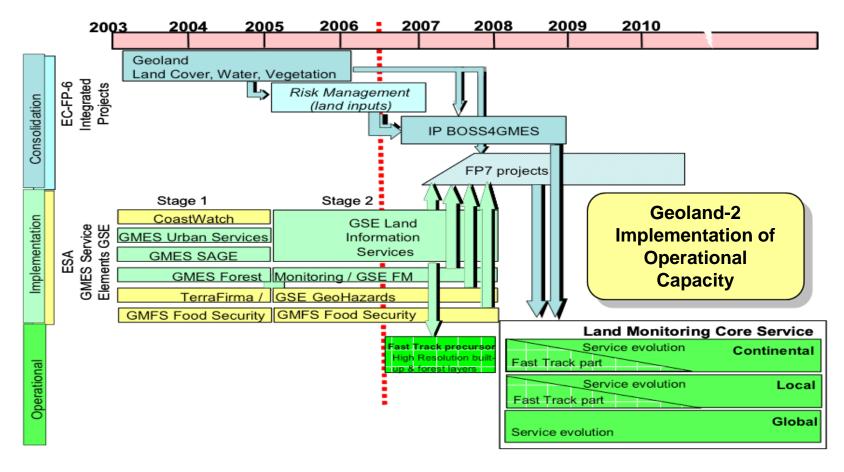
Agriculture – intensification leads to water stress, soil erosion and biodiversity decline

Urban Settlements and transport networks growing - leads to soil sealing and fragmentation of landscape

Man-made impact & climate variability – require adaptation
Directives & Regulations – requesting geo-spatial monitoring
GMES – supporting reporting & management tasks

- Global Monitoring for Environment and Security (GMES) aims to provide, on a sustained basis, reliable and timely geo-information services related to environmental and security issues in support of public policy makers' needs
- **GMES** is an EU-led initiative, in which ESA implements the space component and the European Commission manages actions for developing services, relying on both in-situ and space-borne remote sensing data.

GMES basic architecture


- Infrastructures: In-situ and Space data
- Core Mapping Services : Generic products
- Down-stream services: End-users applications

"Fast Track" Services

- Marine Monitoring
- Emergencies Response
- Land Monitoring Core Service

Revised version following the comments from the GAC Delegations

LMCS complements existing operational European services EUMETSAT / SAF Land, JRC / MARS Food, JRC/ ACP Observatory

Geoland2: figures & facts

FP7 Project funded by European Commission Implementing the Land Monitoring Core Service contributing to GEO, interacting with INSPIRE & SEIS

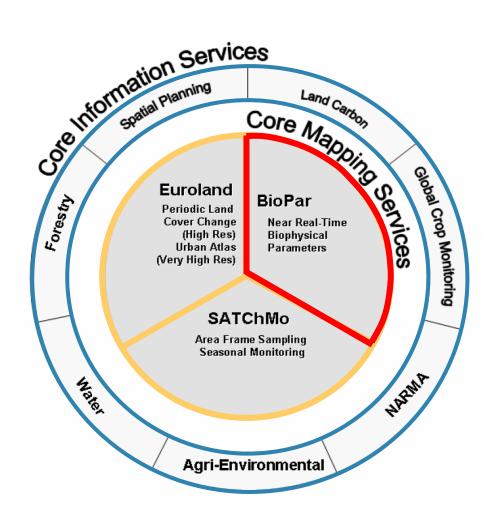
- To prepare, validate, and demonstrate pre-operational service chains and products of the LMCS
- To propose the specific functional organisation of LMCS

50 partners

171 collaborating user organisations
 (81 directly committed to geoland2)

32.5 Mio.€volume – 4 years duration

22.4 Mio. €European Commission grant (FP7)


11 thematic tasks – 1 coordination office

3 stakeholder platforms (users, science, service providers)

geoland2: Functional view

3 Core Mapping Services

- Euroland (Land Cover)
- SATChMo (Seasonal Monitoring)
- BioPar (Biophysical Products)

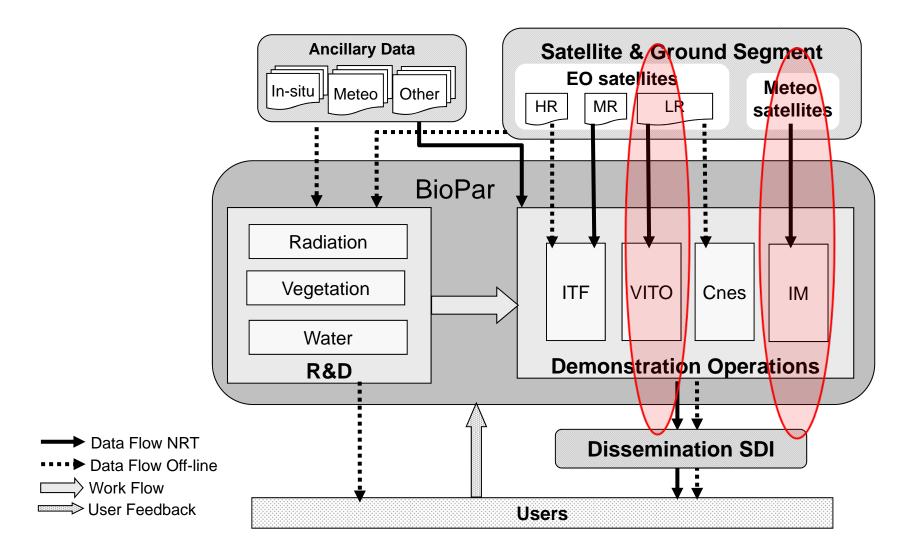
7 Core Information Services

- Land Carbon
- Natural Resource Monitoring in Africa (NARMA)
- Global Crop Monitoring
- Forest
- Agri-Environment
- Water
- Spatial Planning

Set-up an operational system, fully validated, developed according to industry standard, and that meets users' needs.

- Taking benefit of previous R&D projects to complement (SAF Land) or to extend (VGT4Africa) operational services
- Building a strong user base (user-driven service)
- Moving from off-line processing to Near Real Time
- Integration global-regional-local to build a service providing biogeophysical parameters at any scale of interest

Ensuring Service Continuity


- Developing sensor-independent algorithms
- Design back-up processing line (in case of failure of nominal sensor)
- Guarantee the compatibility between historic and current products
- Adapting the present method to the next generation of sensors

Improving Quality Assessment

Combining technical, scientific, utility and external assessments

BioPar CMS Portfolio

Product	NRT / Off-line	Spatial Resolution	Spatial coverage	Temporal Resolution	Sensor (back-up)
Land Surface Temperature	NRT	~ 5 km	Global	3 hours	ΣGEO + AVHRR
Downwelling Shortwave Radiation, Downwelling Longwave Radiation	NRT	~ 5 km	Global	3 hours	ΣGEO + AVHRR
Surface Albedo - GEO	NRT	~ 5 km	Global	10-days	ΣGEO + AVHRR
Surface Albedo - VGT	NRT	1 km	Global	10-days	VGT
LAI, fCover, fAPAR, DMP, NDVI, Phenology	NRT	1 km	Global	10-days	VGT (MODIS)
Burnt areas + seasonality	NRT	1 km	Global	Daily	VGT
MERIS FR biophysical products	NRT	300 m	Test Areas	10-days	MERIS
HR biophysical products	Off-line	< 50m	Pilot Areas	2-3 months	SPOT
Time series of vegetation products	Off-line	4 km	Global	10-days	AVHRR + VGT
Water Bodies + seasonality	NRT	1 km	Africa	10-days	VGT
Soil Moisture + Freeze/Thaw	NRT	25 km	Global	Daily	ASCAT
Time series of soil moisture products	Off-line	25 km	Global	Dailly	ERS1&2 Scatt

Albedo from Σ GEO + AVHRR data

Product content:

- Directional-hemispherical ("black-sky") albedo, Bi-hemispherical ("white-sky") albedo, spectral (VIS, NIR, SWIR) and broadband (0.3-4.0 μm)
- Error estimate and quality flag.

Input:

Geostationary Satellite (METEOSAT, GOES, MTSAT) + AVHRR data

Product Characteristic:

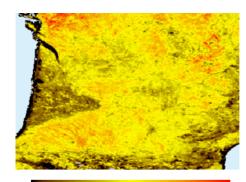
NRT, global at 5-km,10-days, 5% accuracy (expected).

Added value:

- Global product taking benefit of the higher frequency of geostationary satellite sensors and polar satellites for high latitudes
- Processing chain: adaptation of algorithms developed for EUMETSAT data
 - Global Albedo developed at EUMETSAT

R&D Challenge:

- Fusion of GEO products and AVHRR product
- Fusion at the product (albedo) level taking into account error bars
- R&D and Production: Portuguese Meteorological Institute
 - V1 (ΣGEO) expected in 2010; V2 (ΣGEO + AVHRR) expected in 2012



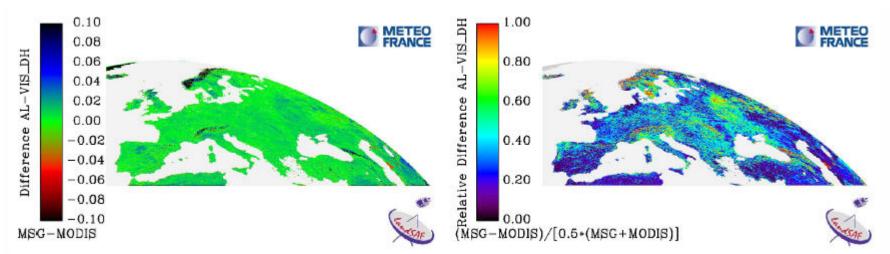
Albedo from SPOT/VEGETATION data

Product content:

- Directional-hemispherical ("black-sky") albedo, Bi-hemispherical ("white-sky") albedo, spectral (VIS, NIR, SWIR) and broadband (0.3-4.0 μm)
- Error estimate and quality flag.
- Input: SPOT / VEGETATION data
- Charact.: Global, 1 km spat. res., 10-days temp. res., 5% accuracy (tbd)
- Added value: consistency with historic products
- Methodology: Processing chain developed in the FP5/CYCLOPES project at METEO-FRANCE
 - Atmospheric correction, cloud-screening
 - Inversion of kernel-driven BRDF model (Roujean et al., (1992))
 - Angular integration to retrieve spectral albedo
 - Broadband conversion
- V0 (CYCLOPES) validated and user accepted in Geoland
- Production Center: VITO (Belgium)
 - Operational production starting in 2010

VGT albedo over France

13

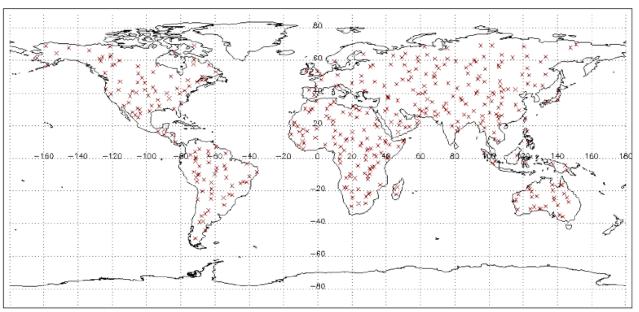

Procedure

- 1- Technical validation at production centres (IM, VITO)
- 2- Scientific validation by independent team (EOLAB)
- 3- Utility assessment by user (CIS)
- 4- Review by external experts (tbd)

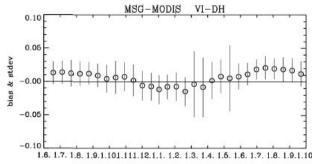
Scientifc Validation Plan follows CEOS LPV guidelines

Inter-comparison with operational products (MODIS Albedo)
 Spatial consistency

1- Overall evaluation of products (maps, difference maps)

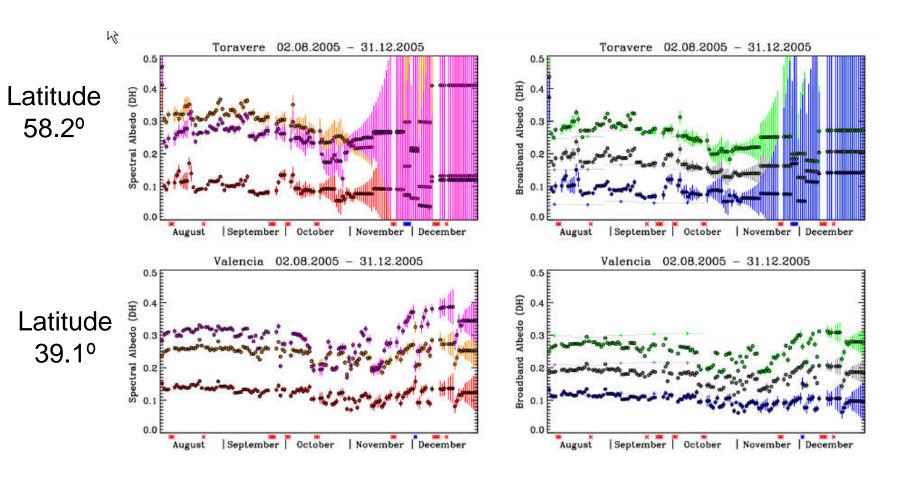



Spatial consistency


2- Statistical analysis (RMSE, bias, r)

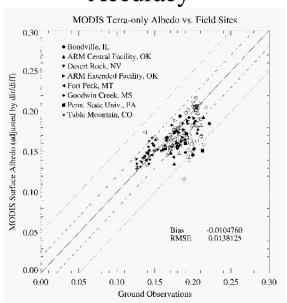
BELMANIP-2 list of site is proposed for the statistical analysis of spatial consistency

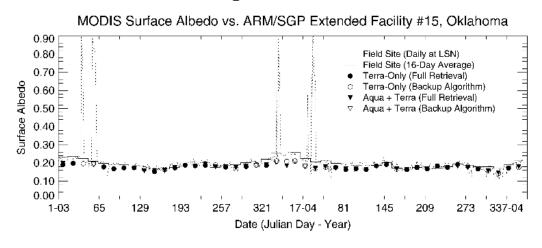
BELMANIP-2 distribution of sites over the globe



Figures from LSA SAF Albedo Validation Report

Temporal consistency


Figures from LSA SAF Albedo Validation Report


Direct Validation

- Accuracy and Temporal realism of BioPar albedo products will be assessed against in-situ measurements (blue-sky albedo)
- Baseline Surface Radiation Network (BSRN), including SURFRAD and ARM sites, AMMA sites or data from field-airborne experiments will be used when coincident.

Accuracy

Temporal Realism

Figures from Salomon, Schaaf et al., (2006). IEEE.

- Land Monitoring Core Services is the GMES Fast Track Services dedicated to land surface products
- FP7 Geoland-2 aims at implementing the operational capabilities of GMES LMCS during the period 2008-2012.
- BioPar Core Mapping Service will be in charge of biogeophysical variables (radiation, vegetation, water) production in Near Real Time and off-line mode
- Two global surface albedo products will be generated starting in 2010
 - ALBEDO VGT based on CYCLOPES processing chain (kernel-driven aproach)
 - ALBEDO GEO+AVHRR based on fusion of geostationary and polar orbiting satellite sensor data
 - The processing chain will be developed based on existing processing chains (EUMETSAT).
 - Fusion of GEO + AVHRR products weighted by their uncertainties
 - Special atention will be paid to the accuracy assessment: Technical, Scientifical, by Users and external experts.
- Operational monitoring of surface albedo in the LMCS is expected from 2012 onwards

More information at www.land.eu www.gmes-geoland.info

■ Thank you very much for your attention!